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Many cities operate bike sharing systems in which riders rent a bike at one station and return it a 
short time later to another station. Because almost all trips are one way, the supply of bikes and 
docks at some stations eventually becomes unbalanced with demand, preventing riders from 
either renting or returning a bike. Consequently, bike sharing system operators spend time and 
resources (including fossil fuels) moving bikes from stations with an excess of bikes to those 
with shortages. This article uses an animated discrete-event simulation model to investigate the 
possibility of changing the system’s initial conditions to reduce shortage events. Results based on 
data from San Francisco’s bike sharing system show that selectively adding just 3-4% to the total 
number of docks and bikes in the system, at just a handful of stations, can lower the number of 
dock and bike shortages by 30%, significantly reducing the amount of rebalancing required by 
the operator. 
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I.    INTRODUCTION 
 

Urban bike sharing systems (BSS) 
encourage people to rent bikes in one location 
and return them a short time later at another 
location, facilitating the “last mile” of a 
commuter’s trip as well as giving a healthy, 
green transport option for tourists and others 
who wish to move around the city. Such 
systems have existed in one form or another 
since first appearing in Amsterdam in the mid-
1960s (DeMaio, 2009). Initially taking root in 
European cities, bike sharing systems over the 
past decade have grown rapidly around the 
globe in both number and sophistication. In 
fact, the total number of shared bikes 
worldwide rose from just a few thousand in a 
handful of cities in 2002 to nearly one million 
bikes in 855 cities by 2014, with more than 
three fourths of the bikes operating in China 

(Richter, 2015). Furthermore, current systems 
use a variety of technologies including credit 
card payment, electronically-controlled docks 
accessed with fobs, on-board GPS devices to 
track bikes, and telecommunication systems 
that allow real-time bike and dock availability 
information to be accessible to users with 
smart phones (DeMaio, 2009). 

In addition to lowering expenses, 
improving health, and providing more 
transportation options for participants, the 
purported benefits of bike sharing systems 
include reducing congestion and auto 
emissions. In practice, however, it’s unclear 
whether or not such systems shift a meaningful 
percentage of single-occupant car drivers out 
of their cars onto bikes (Fishman et al., 2013). 
Another major issue that diminishes the 
environmental and financial benefits of a BSS 
is that, over time, the distribution of available 
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bikes becomes unbalanced with the demand 
for bikes, requiring BSS operators to 
periodically reposition (or rebalance) the bikes, 
typically via fossil-fueled trucks. To mitigate 
the environmental impact and financial cost of 
rebalancing, it may be possible for BSS 
operators to make relatively small changes in 
the system’s initial conditions (the number of 
docks at each station and the number of bikes 
placed at each station at the start of the day) 
that will reduce the number of bike and dock 
shortages faced by riders. 

The rest of this paper is organized as 
follows. Section 2 reviews related literature, 
while Section 3 discusses the BSS operating in 
San Francisco and some of its key data. 
Section 4 presents an animated discrete-event 
simulation model of San Francisco’s system, 
while Section 5 discusses key performance 
measures for the system and how the model 
was validated. Section 6 describes experiments 
performed with the model to identify improved 
initial conditions. Finally, Section 7 provides 
conclusions and points to possible areas of 
future work. 

 
II.    RELATED LITERATURE 

 
The literature on bike sharing 

differentiates between two modes of 
rebalancing: static and dynamic. In the static 
case, no user activity is assumed to be taking 
place during rebalancing. This is nearly true in 
most BSS bikes late at night, when bikes are 
repositioned in order to get the system ready 
for the next day. In the dynamic case, bikes are 
rebalanced multiple times throughout the day 
while the system’s inventory of bikes is 
fluctuating. Although there appears to be more 
published work regarding the static case than 
the dynamic case, BSS operators in practice 
employ both static and dynamic strategies to 
rebalance their systems, as they are 
complementary in nature.  

In the static setting, Benchimol et al. 
(2011) and Erdoğan et al. (2015) presented 

heuristic and exact algorithms, respectively, 
for routing a single vehicle around a BSS at 
lowest cost, picking up and dropping off bikes 
at various stations to better prepare the system 
for the next day’s demand. Going an important 
step further, Chemla et al. (2013), Rainer-
Harbach et al. (2013), Raviv et al. (2013) and 
Dell’Amico et al. (2014) have all proposed 
heuristics to find the best routes for multiple 
vehicle to follow while determining how many 
bikes to pick up and drop off at each station 
along the vehicles’ routes. In the same setting, 
Di Gaspero et al. (2013) presented a hybrid 
metaheuristic method in which the vehicle 
routing variables are handled by ant colony 
optimization (to minimize work done by the 
vehicles), while operational variables 
indicating the number of bikes to load or 
unload at each station are handled by 
constraint programming (to minimize 
deviations from the target number of bikes at 
each station). 

In the dynamic case, Contardo et al. 
(2012) tackled the multiple vehicle problem 
with mathematical programming formulations 
that schedule vehicles to pick up and drop off 
bikes at stations while minimizing unmet 
demand, defined as the number of customers 
who try to rent a bike at an empty station or 
return one to a full station. They used 
decomposition techniques on their arc-flow 
formulation to find feasible solutions quickly. 
Schuijbroek et al. (2013) combined the 
determination of bounded service level 
requirements at each station, based on a finite 
capacity queuing system view of each station’s 
demand, with the design of near-optimal 
vehicle routes to rebalance the bikes in any 
given period for which demand is stationary. 
Their cost minimizing heuristic decomposed 
the multiple vehicle problem into a set of 
single-vehicle problems that can be solved 
quickly. Kloimüllner et al. (2014) adapted 
heuristics developed for the static case with 
the goal of finding efficient routes for multiple 
vehicles so that the BSS is brought into a 
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balanced state and is able to fulfill user 
demands as much as possible. However, while 
reducing operator costs and unsatisfied 
demand, all of these operator-based 
approaches in both the static and dynamic 
cases have relied on fuel-burning vehicles for 
rebalancing and incur the associated 
environmental costs.  

Other researchers have turned to 
computer simulation to model the behavior of 
resource sharing systems and suggest 
improved rebalancing strategies. For example, 
Kek et al. (2005) employed discrete event 
simulation to test different relocation 
techniques in car sharing systems, one of 
which might allow for a 10% decrease in car 
parking lots and 25% less staff. Ji et al. (2014) 
used Monte Carlo simulation to evaluate the 
reliability of a proposed e-bike sharing system 
under various scenarios involving different 
numbers of batteries and e-bikes in the system; 
however, in their small, two-station pilot 
system, rebalancing was not considered since 
it only allows riders to make round trips. 
Caggiani and Ottomanelli (2013) simulated 
bike rebalancing in the dynamic case, aiming 
to minimize vehicle repositioning costs for the 
BSS operator while maintaining a high level of 
user satisfaction, but used an aggregated, 
period-based model that does not portray the 
behavior of individual riders.  

The work presented here employs a 
detailed discrete-event simulation model, in 
conjunction with an optimization routine, to 
investigate how changing the system’s initial 
conditions could reduce bike and dock 
shortage events. Resetting the number of 
docks at a small number of stations would be a 
one-time adjustment to the BSS, while 
adjusting the number of bikes at a few stations 
would need to occur at the end of each day, 
similar to static rebalancing efforts. One 
advantage of our approach is that the changes 
we recommend are simple and need only be 
made at a small number of stations. Moreover, 
because decision makers tend to have an easier 

time understanding animated simulation 
models than complex algorithmic-based 
approaches, our recommendations may be 
more likely to be implemented by the system 
operator. 

 
III.    SAN FRANCISCO’S BIKE  
          SHARING SYSTEM 

 
In the San Francisco Bay Area, a 

leading bike share company called Motivate 
(Simons, 2015) operates a BSS consisting of 
approximately 700 bikes circulating among 70 
stations in 5 cities: San Francisco, Redwood 
City, Palo Alto, Mountain View and San Jose. 
However, since 91% of the bike sharing rides 
taken in the Bay Area occur on bikes moving 
among San Francisco’s 35 stations, we 
confined our analysis to the San Francisco 
portion of the larger Bay Area system. The 
locations of San Francisco’s stations, which 
began operating in August 2013, can be seen 
in Figure 1. At present, in the pilot phase of 
this BSS, all stations are located in the 
relatively flat, largely commercial northeast 
quadrant of the city.  

In August 2015 the BSS operator made 
data files from its first two years of operation 
publicly available on the Internet (Bay Area 
Bike Share, 2015). We used data from the 
second year (September 2014-August 2015) in 
this project; Schuijbroek et al. (2013) give 
details on the format of these types of files. 
The “Trip” file contains 322,437 records of 
anonymized trips taken within San Francisco, 
where each trip record gives the bike number, 
the start day and time, end day and time, 
starting and ending station, and the rider type 
(annual or casual). From this file, we deduced 
several key characteristics of the system and 
its riders using the JMP software package 
(SAS Institute, 2013), including the arrival 
rates to each station by hour and rider type, 
and the transition probabilities between each 
pair of stations by rider type. Analysis 
revealed that 90% of all rides in San Francisco 
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occur on weekdays, so we further confined our 
study to weekday travel within San Francisco. 
We also noticed that 92% of all weekday trips 
taken in San Francisco were made by annual 
members – typically daily commuters making 
short trips to and from work – while the 

remaining 8% were made by casual riders 
whose trips tend to be both longer and more 
variable than those taken by annual members 
(median and IQR are 16.5 and 20.6 minutes, 
respectively, for casual riders versus 8.1 and 
5.6 minutes, respectively, for annual riders).

 

 
FIGURE 1. SNAPSHOT OF THE ANIMATED PORTION OF THE SFBSS MODEL. 
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The “Status” file consists of more than 
36 million records giving the number of bikes 
and docks available at each station every 
minute during the BSS’s second year of 
operation. Riders may access similar 
information in real time on their smart phones, 
e.g., to see if the station they’re approaching 
has an available bike or dock. We used these 
data to estimate the number of bikes available 
at the beginning of each hour of the day at 
each station, and the fractions of time stations 
had no available bikes and no available docks. 

Finally, we gathered data in order to fit 
theoretical distributions for two variables 
using Arena’s Input Analyzer (Kelton et al., 
2010). In particular, the time (in seconds) 
needed by a rider to remove a bike from its 
dock appears to follow the 10 + 
Exponential(15.1) distribution, while the time 
needed to lock a bike into a dock has the form 
of a Triangular(2, 3, 6) distribution. 

 
IV.    A DISCRETE-EVENT DYNAMIC  
         SIMULATION MODEL  

 
To study the system, we built a detailed 

animated model, referred to here as the San 
Francisco Bike Share Simulation (SFBSS) 
model, using the Arena 14 software package 
(Kelton et al., 2010). The model’s major 
assumptions are the following. 

 
1. Each hour’s bike demand follows a 

Poisson process whose mean comes 
from the Trip file. 

2. Riders who find no bike available at 
their intended starting station wait a 
preset maximum amount of time (1 and 
2 minutes for annual and casual riders, 
respectively) before exiting the system 
without having rented a bike and 
recording a bike shortage. Instead of 
sending unsatisfied riders to other 
stations to look for a bike, the model 
creates arrivals at stations in volumes 
that allow it to match up closely with 

the observed number of completed 
rides. Real BSS are unable to track 
bike shortages, since they’re only 
alerted when bikes are removed from 
or returned to docks, so no actual data 
on bike shortages exists. 

3. Since the trip duration distribution 
across all rides looks Lognormal, we 
assume the travel time distributions for 
all 1,225 origin-destination pairs for 
each rider type are Lognormal as well. 

4. Riders who reach their destination 
station but find no docks available wait 
a preset maximum amount of time (1 
and 2 minutes for annual and casual 
riders, respectively) before checking 
their smart phone app and riding to the 
nearest station with a dock available. 

 
The logical flow of riders (the main 

entities) through the SFBSS model, seen in 
Figure 2, will now be described. First, the 
CreateArrivals submodel generates riders of 
each type using separate arrival streams, and 
places them at their starting stations based on 
historical percentages of trips originating at 
each station, which vary by hour of the day 
and type of rider. The model employs a 
generic bike station structure to greatly reduce 
the amount of code needed to accurately 
represent the system. Modeled riders possess 
an attribute called “Stn” which indicates their 
current station and allows them to index into 
the set of 35 stations.  

Whenever riders reach a station, 
SFBSS first checks to see if they are renting or 
returning a bike. If renting, the model then 
determines if any bikes are available. If so, the 
rider rents a bike at this station and selects a 
destination station (PickNextStn submodel) 
based on historical transition probabilities. 
Riders are then assigned a travel time to their 
destination based on historical data for their 
type, and proceed toward the destination 
station. If the rider has taken the last bike at 
the rental station, the model sets a flag. 
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FIGURE 2. MAIN LOGICAL FLOW OF THE SFBSS MODEL. 

 
 

 
If no bikes are available when a rider 

arrives at a station, the model records a bike 
shortage and the rider waits for a bike to 
become available. If a bike becomes available 
before the preset maximum amount of time 
has elapsed (see Assumption 2), the rider rents 
the bike and follows the logic described in the 

preceding paragraph. Otherwise, the rider 
abandons the BSS without having made a trip. 
Riders reaching a station wanting to return 
their bike must check whether or not a dock is 
available. If one is available, they quickly 
return their bike to a dock and the model 
updates appropriate bike and dock counters. 
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The model then examines whether this station 
is out of docks, and if so, sets a flag to this 
station’s number. Performance measures are 
updated before the rider exits the system. 

When riders reach their destination 
station and find no docks available, SFBSS 
records a dock shortage and the rider then 
waits for a dock to open up at this station. If a 
dock becomes available before the preset 
maximum amount of time has passed (see 
Assumption 4), the rider returns the bike, and 
the model follows the logic of the preceding 
paragraph. Otherwise, riders find the station 
closest to their original destination with a free 
dock and ride toward it. 

 
V.    MODEL VALIDATION AND KEY  
        PERFORMANCE MEASURES  

 
Many system activities are animated on 

screen during model execution (see Figure 1), 
helping us verify that the SFBSS model 
behaves as intended, i.e., its code is valid. For 
example, the model shows annual and casual 
riders as green and blue circles, respectively. 
Station symbols change color depending on 
their status: green indicates that a rental is 
taking place, orange a return, red a dock 
shortage, and blue a bike shortage. Also, blue 
and red numbers next to each station indicate 
the number of currently available bikes and 
docks, respectively.  

We validated the SFBSS model 
operationally by examining several system 
performance measures. While SFBSS tracks 
quite a few outputs, including many that are 
station-specific, we focus here on the major 
summary measures listed in Table 1 below: 1) 
the total time spent in the system, by rider type 
and overall; 2) the total number of rides 
completed, by rider type and overall; and 3) 
the fractions of time no bikes and no docks are 
available. Two related measures of interest 

which the simulation model reports are the 
average number of bike and dock shortages 
per day. Interestingly, these undesirable events 
are not tracked by the BSS operator since its 
electronic data collection system only records 
when bikes are successfully rented at or 
returned to a station. (Dock shortages might be 
recorded if a rider takes the time to report it to 
the operator and request more time to find a 
dock.) 

While San Francisco’s BSS never 
completely shuts down, only 1.5% of all rides 
occur between midnight and 6 am, so we 
treated the simulated system as a terminating 
system that essentially restarts early each day. 
All performance measures from the model are 
averaged over 30 replications, each of which 
represents a 24-hour day. 

The second and third columns of Table 
1 show that SFBSS generates values that are 
close to those observed, in both absolute and 
percentage terms, for the time in system and 
number of completed trips. The table’s last 
column gives 95% confidence intervals for the 
base case model means; the differences 
between the model and observed means are 
not statistically significant for any of the first 
six performance measures. However, the 
model does not match up well on the fractions 
of time with bike and dock shortages. This is 
due to the fact that the real BSS operator 
engages in periodic bike rebalancing, while the 
simulation model does not, leading to longer 
periods of simulated time in which stations 
may have either no bikes or docks available. 
Aside from these measures, the SFBSS model 
seems to credibly represent the real BSS in 
San Francisco, and provides a way to estimate 
the number of shortage events. It also provides 
a reasonably accurate tool with which to 
experiment to predict how the real system 
might react to possible modifications.
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TABLE 1. KEY PERFORMANCE MEASURES FOR THE SFBSS MODEL. 

Performance Measure 
Observed 

Value 

Base Case 
Model 
Mean 

|Diff.| (%) 
95% CI for 
Base Case 

Model Mean 
Time in System (minutes) 

Annual Riders 
Casual Riders 

All Riders 

 
9.70a 

49.95a 
12.91a 

 
9.70 
49.19 
12.77 

 
0.00 (0.0) 
0.76 (1.5) 
0.14 (1.1) 

 
(9.51, 9.89) 

(46.77, 51.61) 
(12.52, 13.02) 

Number of Completed Trips 
Annual Riders 
Casual Riders 

All Riders 

 
1015.4a 
88.0a 

1103.4a 

 
1013.1 
85.6 

1098.7 

 
2.3 (0.2) 
2.4 (2.7) 
4.7 (0.4) 

 
(998.4, 1027.8)

(82.4, 88.8) 
(1083.6, 1113.8)

% of Time w/ Shortage 
Bikes 
Docks 

 
1.85b 
0.95b 

 
4.73 
4.27 

 
2.88 (-156) 
3.32 (-350) 

 
(4.31, 5.15) 
(3.84, 4.70) 

Number of Shortage Events 
Bikes 
Docks 
Total 

 
N/A 
N/A 
N/A 

 
109.7 
124.9 
234.6 

 
N/A 
N/A 
N/A 

 
(100.1, 119.3) 
(113.0, 136.8) 
(220.4, 246.8) 

a Derived from the operator’s Trip data file.  b Derived from the operator’s Status data file. 
 
 
 

VI.    EXPERIMENTATION  
 
We used SFBSS to investigate some 

static rebalancing strategies, namely, adding a 
small number of docks or bikes (or both) to a 
few stations. In three experiments, we looked 
at adding only two dozen docks, adding only 
one dozen bikes, and adding both two dozen 
docks and one dozen bikes simultaneously, 
focusing on the impact on the number of bike 
and dock shortages experienced by riders. 
Reducing dock shortages will make the BSS 
less frustrating for riders because they will 
spend less time searching for a station to return 
their bikes. As a consequence, riders will 
spend less time in the system and the 
availability of bikes for other potential riders 
will increase. This, in turn, will generate more 
rides being taken, along with the associated 
environmental benefits from more people 
using bikes rather than carbon-based 
transportation modes. Similarly, reducing bike 

shortages directly increases the ability of the 
BSS to satisfy more demand, so that more 
rides are taken, raising BSS revenues modestly 
and lessening environmental impacts. Each 
experiment used OptQuest for Arena, an 
optimization routine packaged with Arena 
(Kelton et al., 2010) to solve an appropriate 
mathematical program. Because OptQuest 
uses heuristic methods, it is not guaranteed to 
find global optimal solutions, only local 
optima. 

 
6.1. Adding Two Dozen Docks 
 

Imbalances between supply and 
demand at various stations lead to some 
stations experiencing dock shortages. In 
particular, base case model output indicated 
that five stations had the largest average 
number of dock shortages per day and 
accounted for 84% of all dock shortages: 
stations 70 (with 45.2), 69 (with 28.8), 65 
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(with 11.3), 64 (with 10.5), and 61 (with 8.7). 
We set up an optimization model that sought 
to minimize the total number of dock 
shortages by adding a total of 24 docks (in 
increments of 4) at these five stations while 
holding all other inputs fixed. More formally, 
letting Dj (dj) be the number of docks installed 
(currently) at station j, we instructed OptQuest 
to solve the following optimization problem. 

 
Minimize  Number of Dock Shortages 
 
subject to:   
 
99  D61 + D64 + D65 + D69 + D70  123 
 
dj  Dj  dj + 24, integer, for j = 61, 64, 65, 69, 70 

After 50 simulations of 30 replications 
each, the best solution found by OptQuest was 
to add 16 docks at station 70 (which, because 
it is located at San Francisco’s main train 
depot, actually has room to accommodate this 
solution) and eight docks at station 65. Results 
are shown in the second block of rows of 
Table 2 (bold values indicates statistically 
significant differences from the base case at  
= 5%). For a system with 665 docks, adding 
24 docks to the system represents an increase 
of only 3.6%, but could cut the number of 
dock shortages by 41%, while slightly 
increasing the number of bike shortages by 
5%. The total number of shortage events drops 
by 20%. 

 

 

 

TABLE 2. SIMULATION RESULTS FROM SMALL INCREASES IN THE TOTAL 
NUMBER OF BIKES AND DOCKS. 

 

  Time in System (min.) Trips Completed per day Shortages per day 

Scenario  Annual Casual All Annual Casual All Bikes Docks Total 

Base Case 9.70 49.95 12.91 1015.4 88.0 1013.4 109.7 124.9  234.6 

Min. Dock Shortages 9.20 48.58 12.27 1008.8 84.9 1093.7 115.4   73.3  188.7 

 from Base Case -5%   -1%  -4%     0%  -1%    0%   5% 
   

-41% 
  
-20% 

Min. Bike Shortages 9.97 49.55 13.02 1037.5 86.8 1124.3  82.1 148.9  231.0 

 from Base Case  3%   1%   2%     2%   1%    2% -25% 
   

19%  -2% 

Min. Total Shortages 9.22 49.81 12.34 1027.5 86.1 1113.6  94.2 
   

69.4 163.6 

 from Base Case -5%   1%   -3%     1%   1%    1% 
  

-14% 
   

-44% 
  

-30% 
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6.2. Adding a Dozen Bikes  
 

Supply and demand imbalances also 
cause bike shortages at various times at some 
stations. In the model’s base case, six stations 
had the highest average number of bike 
shortages per day and accounted for 60% of all 
bike shortages: station 70 (with 23.9), 73 (with 
11.1), 55 (with 9.3), 62 (with 8.0), 56 (with 
7.9) and 69 (with 6.1). We ran a second 
optimization to minimize the total number of 
bike shortages by adding 12 bikes in total (at 
the start of the day) at these six stations, 
keeping all other inputs at their base case 
values. In particular, letting Bj (bj) represent 
the number of bikes available (currently) at the 
beginning of each day at station j, we set up 
OptQuest to solve the following problem.  

 
Minimize  Number of Bike Shortages 

   
subject to:  
  
64  B55 + B56 + B62 + B69 + B70 + B73  76 
 
bj  Bj  min(bj + 12, dj), integer, for j = 55, 
56, 62, 69, 70, 73 
 

After 50 simulations of 30 replications 
each, the best solution found was to add six 
bikes at both stations 55 and 70, yielding 
performance measures shown in the third 
block of rows of Table 2. While a dozen bikes 
in a system of 323 bikes represents only a 
3.7% increase, the resulting bike allocation 
could cut the number of bike shortages by 
25%. However, this solution also raises the 
average number of dock shortages by 19% so, 
overall, this does not seem to be a solution 
worth implementing. 
 
6.3. Adding Two Dozen Docks and a Dozen 
Bikes  
 

Since bikes are best added to the 
system when docks are added at the same time, 

we ran a third optimization to minimize the 
total number of bike and dock shortages by 
adding a total of 24 docks and 12 bikes at the 
aforementioned stations. Specifically, we ran 
the following model with OptQuest. 
   
Minimize  Number of Dock + Bike Shortages 
 
subject to:  
  
99  D61 + D64 + D65 + D69 + D70  123 

      
64  B55 + B56 + B62 + B69 + B70 + B73  76 
 
dj  Dj  dj + 24, integer, for j = 61, 64, 65, 69, 70 
 
bj  Bj  min(bj + 12, dj), integer, for j = 55, 56, 62, 
69, 70, 73 
 

After 150 simulations of 30 
replications each, the best solution found was 
to add 20 and 4 docks at stations 70 and 69, 
respectively, along with 9 bikes at station 55, 2 
at station 56, and 1 at station 70. The resulting 
performance measures (bottom section of 
Table 2) show that by judiciously adding just 
3-4% to the number of docks and bikes in the 
system, a statistically significant and 
practically important 30% decrease can be 
achieved in the total number of dock and bike 
shortages. 
 
VII.    CONCLUSION AND FUTURE  
           WORK 
 

Like most cities, San Francisco’s BSS 
faces a great deal of fluctuation in the demand 
for bikes and docks at its stations at different 
times of the day. This affects the imbalance 
problem by shifting the location of the bike 
and dock shortages throughout the day. For 
example, SF’s busiest station (70) experiences 
a large number of bike shortages early each 
weekday morning as numerous commuters 
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arrive on trains and seek bikes to ride to their 
final destinations within the city; near the end 
of each day, this station often runs out of 
docks as commuters return their bikes before 
hopping on trains heading out of the city. San 
Francisco’s BSS operator operates trucks that 
move bikes around the city but they cannot use 
the same rebalancing strategy all day, e.g., 
they must deliver many bikes to station 70 in 
the morning but remove many in the afternoon.  
This paper has described an animated discrete-
event simulation model of a BSS that can be 
used to investigate key issues faced by BSS 
operators. In particular, we investigated how 
changing the daily initial conditions of the 
system by slightly increasing the number bikes 
and docks at just a few stations might improve 
overall system performance and lessen the 
need for rebalancing. Results based on data 
from San Francisco’s BSS showed that 
selectively adding 3-4% to the total number of 
docks and bikes could decrease the total 
number of dock and bike shortages by 30%. 
Doing so could reduce the frequency and 
quantity of truck-based rebalancing activity 
performed by the operator and its associated 
environment impact, at relatively low cost. 

One possible area for future work 
would be to study the impact of paying some 
riders to rebalance bikes by “riding against the 
tide” to stations that tend to experience bike 
shortages. Modeling could be used to simulate 
various pricing strategies that might induce at 
least some riders to participate in dynamic 
bike rebalancing. It might also be worthwhile 
to more thoroughly analyze the Status data file 
to see if patterns in the BSS operator’s 
rebalancing efforts could be detected and 
understood; if so, operator-based dynamic 
rebalancing activity could be incorporated into 
the simulation model. Finally, as the San 
Francisco Bay Area gears up for a 10-fold 
increase in the number of bikes in its system 
(Green, 2015), we could expand our model 
and test how these ideas and others might 
perform in a much larger bike sharing system. 
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