
Feng Zhou
Order Scheduling On a Single Batch Processor

Journal of Supply Chain and Operations Management, Volume 16, Number 1, March 2018

124

Order Scheduling On a Single Batch Processor

Feng Zhou*
California State University, Stanislaus, Turlock, California, USA

We consider the problem of scheduling customer orders on a single batch processor machine. The
batch processor machine can process up to a certain number of jobs at the same time. Different
customer orders may be grouped into the same batch for processing and a customer order may also
be split into multiple batches for processing. Three scheduling objective measures are studied: total
completion time, the number of late orders and the maximum lateness of orders. For each objective,
we either show characteristics of optimal schedules or provide a simple polynomial time algorithm
to develop an optimal schedule.

* Corresponding Author. E-mail address: fzhou@csustan.edu

I. INTRODUCTION

There are two types of processing

technology in manufacturing industry,
discrete processing and batch processing. In
discrete processing, a machine can only
process one job at a time. Jobs are scheduled
to be processed on the machine sequentially.
In batch processing, a machine is capable of
processing up to a certain number of jobs
(usually of the same type) simultaneously.

The majority of job/machine
scheduling literature focus on discrete
processing setting. This mainstream research
can be classified according to the
configuration of machines and the flow of
jobs, i.e. single machine models, parallel
machine models, flow shop models and job
shop models. For each type of model,
literature can be further classified in term of
scheduling objective measures, like total
completion time, the number of late jobs and
the maximum lateness, etc. Readers who are
interested in this area can refer to Chen et al.
(1998) and Pinedo (2008).

There are a small amount of discrete
processing scheduling models that also
include batching operations. In those models,
jobs of the same family are grouped in the
same batches and are processed
consecutively. Setups are performed
whenever a machine is switched to process a
new batch of jobs. Batching jobs of the same
family will save setup time/cost and result in
improved efficiency for a manufacturer.
Santos and Magazine (1985), Dobson et al.
(1987), Baker (1988), Coffman et al. (1989),
Vickson et al. (1993), Gerodimos et al.
(2000), Lin (2002) and Zhou et al. (2014)
studied a variety of single machine
scheduling problems with batching decisions.
This research stream is still considered as
discrete processing in scheduling literature
because jobs in the same batch are processed
one at a time consecutively.

Batch processing in scheduling draws
much less attention over the years. One
reason may be related to its limited
application in manufacturing industry. Hou et
al. (2014) and Ahmadi et al. (1992) provided
multiple batch processing examples. One of

Feng Zhou
Order Scheduling On a Single Batch Processor

Journal of Supply Chain and Operations Management, Volume 16, Number 1, March 2018

125

the examples occurs in a semiconductor
factory where chips are tested simultaneously
in a burn-in oven. Hou et al. (2014) studied a
batch/lot scheduling problem on a single
machine. In their model, a manufacturer
needs to group customer orders into multiple
batches and schedule them on a single batch
processor to minimize total completion time.
They showed a key property regarding
optimal schedules. Their model restricts each
customer’s order size to be less than the
capacity of the batch processor. Furthermore,
a customer order may be split into two
consecutive batches and its completion time
is assumed to be the totals of the weighted
completion time of the two consecutive
batches. Yang et al. (2017) studied a similar
problem as Hou et al. (2014). However, they
require each customer order to be processed
in the same batch, thus eliminating order split.
They proposed a binary integer programming
method and four simple heuristics to solve
the problem. Ahmadi et al. (1992) presented
a new class of two-machine flow shop
scheduling problems in which one machine is
a discrete processor while the other is a batch
processor. Two scheduling objective
measures are considered in their models, the
makespan and total completion time. They
analyzed complexities of their models and
provided either polynomial time procedures
or heuristics to solve the proposed problems.

In this paper, we consider a similar
setting as Hou et al. (2014). However, we do
not restrict customer order sizes to be less
than the capacity of a batch processor. We
require each order to be delivered as a whole
instead of allowing partial shipments.
Therefore the completion time of an order is
when the last batch that contains that order
completes. Furthermore, we study three
important scheduling objective measures
instead of one as in Hou et al. (2014): total
completion time, the number of late orders
and the maximum lateness of orders. All of
the above would make our research a nice

addition to the existing literature on batch
processing scheduling.

II. PROBLEM DESCRIPTION

We study a setting where a

manufacturer has received N customer orders,
varying in sizes and needs to schedule them
on a batch processor machine. The machine
is capable of processing a maximum of b
units of jobs at the same time, where b is the
machine’s capacity (or batch size limit). A
customer’s order size, σi, where i = 1, ..., N,
may exceed the capacity of the machine, σi ≥
b. Therefore the order has to be split into
multiple batches. The processing time of each
batch on the machine, u, is constant,
regardless of types of customer orders or
sizes. There is no setup time or cost between
any of two consecutive batches. To better
utilize the machine’s capacity, if multiple
batches are required, all batches should be
full except the very last batch. An order will
only be delivered to its customer when all of
its units are completed. Therefore the
completion time of an order, C(i), i = 1, ..., N,
is defined as the time when the last batch that
contains that order is completed. The
manufacturer needs to group all customer
orders into multiple batches and schedule
them on the machine. Three common
scheduling objectives are considered,
including the total completion time of all
orders, the number of late orders, and the
maximum lateness of orders. The following
sections will address each objective
accordingly.

III. MINIMIZING THE TOTAL
COMPLETION TIME OF ALL
ORDERS

In a typical manufacturing setting, the

completion time of an order or a job is used
to measure how long that order or job and all
of its associated raw material, parts and

Feng Zhou
Order Scheduling On a Single Batch Processor

Journal of Supply Chain and Operations Management, Volume 16, Number 1, March 2018

126

components stay in the system. The longer
the order remains in the system, the higher
inventory cost it will be. In that sense,
minimizing the total completion time of all
orders is the same as minimizing the total
work-in-process (WIP) inventory cost, which
has great appeal to manufactures in business
practice.
Theorem 1. There exists an optimal schedule
in which orders are sequenced in
nondecreasing order of their sizes, σi, then
arranged to fill up all the batches and
processed sequentially.
Proof. Without loss of generality, assume
order i and j are any two orders in a schedule
S, where S = (..., i, ..., j, ...) and σi ≥ σj.

Interchange the position of order i and
j in the schedule S and it results in a new
schedule S’. It is clear that the completion
time of order i in the new schedule S’, CS’(i),
is the same as the completion time of order j
in the original schedule S, CS(j), i.e. CS’(i) =
CS(j). It is also clear that CS’(j) ≤ CS(i)
because of σj ≤ σi. Therefore, CS’(i)+CS’(j) ≤
CS(j)+CS(i). Furthermore, for all of the orders
in between order i and j, their total
completion time in the new schedule S’ is no
more than in the original schedule S because
σi≥ σj. For all the remaining orders, their
completion time is unaffected by the
interchange of order i and j. Therefore the
total completion time of all orders in the new
schedule S’ will be no more than in the

original schedule S, i.e., '

1 1

() ()
N N

SS
i i

C i C i
 

  .

Repeatedly apply the same
interchange argument for all the other orders,
our proof is completed.

According to Theorem 1, a
manufacturer would schedule customer
orders based on their order sizes, from the
smallest to the largest, and then assign them
to fill up each batch in sequence.

IV. MINIMIZING THE NUMBER OF
LATE ORDERS

Minimizing the number of late

customer orders has great practical
implication. It is equivalent to maximize the
percentage of on-time order shipments,
which is an important performance measure
a manager needs to constantly monitor and
evaluate in business practice. A manufacturer
may not complete all of its orders on time due
to capacity constraint or other restrictions,
but it needs to find a way to schedule orders
to limit the number of late customer orders.

Each customer order is associated
with a due date, di, where i = 1,2, ..., N. If the
completion time of an order is later than its
due date, C(i) > di, that order is late. We are
to use a forward algorithm by Pinedo (2008)
to build a schedule that would result in the
minimum number of late orders for the
manufacturer. Before the introduction of the
algorithm, reorder all customer orders
according to their due dates in nondecreasing
order, which is often referred to as the earliest
due date (EDD) rule, such that d1 ≤ d2 ≤ ... ≤
dN. The algorithm will go through N
iterations. During each iteration, the
algorithm will select the first order from an
unscheduled customer order set, Jw, and
assign it to either an order set, Je, in which all
of its orders would meet their due dates or the
other order set, Jl, in which all of its order
would be considered as late orders. The
algorithm is presented as follows.
Step 1. Set Je = ∅, Jl = ∅ and Jw = {1, 2, ...,
N}. Set the counter n = 1.
Step 2. Add customer order n to set Je, and
delete order n from set Jw. Go to the next
step.
Step 3. If

e ii j

nu d
b




 
 

  



Feng Zhou
Order Scheduling On a Single Batch Processor

Journal of Supply Chain and Operations Management, Volume 16, Number 1, March 2018

127

where ڿxۀ is denoted as the smallest integer
that is greater than or equal to x. Go to the
next step.

Otherwise, denote order m as the
largest order in set Je, then remove order m
from set Je and reassign it to set Jl.
Step 4. Set Jn = Je. If n = N, stop; otherwise,
set n = n + 1 and go to step 2.

Once the algorithm terminates, it
results in three order sets: Je, a set in which
all of its orders would be completed on time;
Jl, a set in which all of its orders would be
completed late; and Jw, which should become
an empty set. The resulting schedule from the
algorithm contains two portions: the first
portion is from set Je, in which orders are
scheduled in nondecreasing order of their due
dates; the second portion of the schedule is
from set Jl in which orders can be sequenced
arbitrarily.
Lemma 2. Define an order set J as a feasible
set, if all of its orders would meet their due
dates when they are sequenced according to
EDD rule, like d1≤ d2≤ ... ≤ dN. Then, order
sets Jn in the forward algorithm are feasible,
where n = 1, ..., N.
Proof. We prove by induction.

It is obvious when n = 1, J1 is
feasible if σ1≤ d1. Otherwise, J1 is an empty
set.

Assume it is true for n = k −1, thus
order set Jk−1 is feasible. Add order k to
order set Jk−1 results in a new set J’.

If the completion time of order k in J’
satisfies

'

' () ii J
kj

C k u d
b




 
  
  



then order k will also be completed on time
in J’. And therefore the order set Jk = J’ is
feasible.

If the completion time of order k in J’
satisfies

CJ’(k) > dk
then remove the largest order m from set J’,
which results in a new set J’’, where

'max { }m ii j
 


 . Since σk ≤ σm and dm ≤ dk,

the resulting set J’’ is also feasible, and Jk=
J’’.

Therefore it is also true for when n =
k, Jk is feasible.

Our proof by induction is now
complete.
Lemma 3. Define an order set J as l−optimal,
if it is a feasible subset of orders 1, 2, ..., l and
if it has, among all feasible subsets of orders
1,2, ..., l, the maximum number of orders.
Then, for any l > n, there exists an l−optimal
order set that consists of a subset of Jn and a
subset of orders n + 1, ..., l.
Proof. We also prove it by using induction.

When n = 1, it is clearly true that there
exists an l−optimal set that consists of a
subset of J1 and a subset of orders 2, ..., l.

Now assume it is true for n = k − 1.
Therefore there exits an l−optimal order set,
J∗, which consists of a subset of Jk−1 and a
subset of orders k, ..., l.

We are to prove it is also true for n =
k, where there exits an l−optimal order set, J∗∗,
which consists of a subset of Jk and a subset
of orders k + 1, ..., l. And we can show J∗∗ can
be constructed according to the following
three cases.

Case 1: Order set Jk consists of Jk−1

plus order k. To create set J∗∗, just use set J∗.
Case 2: Order set Jk consists of Jk−1

plus order k, and subtract order m which does
not belong to set J∗. Then to create set J∗∗, use
set J∗ again.

Case 3: Order set Jk consists of Jk−1

plus order k, and subtract order m which does
belong to set J∗. Since Jk−1 plus order k is not
feasible, there must exist an order p in a set
that consists of Jk−1 and k, such that p does
not belong to J∗. Now to create set J∗∗, use set
J∗ plus order p and subtract order m. It is clear
that J∗∗ is a subset of Jk and k + 1, ..., l. Since
J∗∗ has the same number of orders as set J∗,
we only need to show J∗∗ is also feasible.
Since J∗∗ differs from J∗ in its intersection

Feng Zhou
Order Scheduling On a Single Batch Processor

Journal of Supply Chain and Operations Management, Volume 16, Number 1, March 2018

128

with {1, ..., k}, it suffices to verify the
following two properties: the orders that are
in the intersection of J∗∗ and {1, ..., k} is also
feasible, and the total processing time of
orders that are in the intersection of J∗∗ and
{1, ..., k} is no more than the total processing
time of orders that are in the intersection of J∗
and {1, ..., k}. The first property is true
because the intersection of J∗∗ and {1, ..., k}
is a subset of Jk, which is feasible according
to Lemma 2. The second property is also true
due to σp ≤ σm.

Therefore it is also true for n = k.
Our induction proof completes.
Theorem 4. The algorithm yields an optimal
schedule that minimizes the number of late
orders.
Proof. We only need to prove the resulting
order set Jn in the algorithm is an n−optimal
for n = 1, ..., N. By induction, it is clearly
true for n = 1.

Assume it is also true for n = k − 1,
thus Jk−1 is a (k − 1)−optimal. According to
Lemma 3, the set that consists of Jk−1 and k
must contain a k−optimal set. If Jk, a feasible
set by Lemma 2, consists of the entire set Jk−1

plus k, it must be k−optimal. If set Jk−1 plus
order k is not feasible, the k−optimal set must
be a smaller set within the set of Jk−1 and k;
but it must have at least the same number of
orders as set Jk−1. Set Jk clearly satisfies this
condition and Jk is a k−optimal set. Therefore
it is also true for n = k.

Our induction proof now completes.
The algorithm examines each order in

set Jw and then place them in either set Je or
Jl. If a new added order in set Je is considered
as late order, the largest order in set Je would
be removed and then placed in set Jl. This
process would ensure small orders with early
due dates be scheduled earlier while large
orders with late due date would be scheduled
at later time. In such a way, the number of late
orders is minimized.

V. MINIMIZING THE MAXIMUM
LATENESS OF ORDERS

Another due date related objective is

the maximum lateness of customer orders.
The maximum lateness measures a
manufacturer’s worst performance regarding
meeting due dates. When a manufacturer is
unable to complete all orders by their due
dates, it has great incentive of limiting the
maximum lateness of its orders. That is
because a customer may cancel its order if it
is too late and may never order again from
that manufacturer. The lateness of a customer
order is the difference between its completion
time and due date, i.e., L(i) = max[C(i) – di,
0], where i = 1, ..., N.
Theorem 5. There exists an optimal schedule
in which all of the orders are sequenced in
nondecreasing order of their due dates, such
that d1 ≤ d2 ≤ ... ≤ dN.
Proof. Assume there are two consecutive
customer orders, i and j, in a schedule S, such
that S = {..., i, j, ...} and di ≥ dj. We are to
show interchange order i and j in the schedule
would either decrease or not affect the
maximum lateness.

It is obvious when order i and j are
swapped, it would not affect the completion
time of all the other orders, and therefore
would not affect the lateness of all the other
orders. Denote L∗ as the maximum lateness of
all the other orders, i.e., L∗ = max{Ln}, where
n ≠ i, j.

Before order i and j are swapped, we
have

Lmax=max{C(i)-di, C(j)-dj, L∗}
After order i and j are swapped, we

have
L’

max=max{C’(i)-di, C’(j)-dj, L∗}
where C’(i) = C(j) and C’(j) ≤ C(j).

Since di ≥ dj, it leads to C’(i) – di ≤ C(j)
− dj. Because C’(j) ≤C(j), it results in C’(j) −
dj ≤ C(j) − dj. Therefore we can conclude L’

max
≤ Lmax.

Feng Zhou
Order Scheduling On a Single Batch Processor

Journal of Supply Chain and Operations Management, Volume 16, Number 1, March 2018

129

Repeatedly applying the pairwise
interchange argument for all the other orders
completes the proof.

Theorem 5 shows to minimize the
maximum lateness of orders, a manufacturer
needs to prioritize orders with earlier due
dates in its schedule, i.e. process customer
orders with the earliest due date first, then
followed by orders with increasing due dates.

VI. CONCLUSION

This paper studied a customer order

scheduling problem for a manufacturer who
is equipped with a single batch processor
machine. Customer orders vary in sizes and
may be larger or smaller than the capacity of
the batch processor machine. Different
customer orders may be grouped into the
same batch for processing and an order may
be split into multiple batches. A customer
order cannot be delivered until all of its units
are completed. Three popular scheduling
objective measures are studied in the paper,
including the total completion time of all
orders, the number of late orders and the
maximum lateness of orders. For each
objective measure, we either show properties
of optimal schedules or develop a simple
polynomial time algorithm that would result
in an optimal schedule.

There has been limited research in
batch processing scheduling compared to
discrete processing scheduling. The main
reason is its limited industry applications.
However, as examples shown in Ahmadi et al.
(1992) and Hou et al. (2014), there are
noticeable industry applications for batch
processing, like semiconductor
manufacturing, production of adhesives and
paint, bakery and water purifying industry.
As new technology/machinery being
developed, it is reasonable to believe batch
processing will find more usage in practice.
This paper extends the existing literature on

batch processing and hopefully would draw
more research interests in future.

As for future research, it is
worthwhile considering the case when a
manufacturer does not permit grouping
different customer orders into the same batch
for processing. This may occur because of the
varying processing requirements (like
processing time or processing temperature)
for different customer orders.

REFERENCES

Ahmadi, J. H., Ahmadi, R. H., Dasu, S. and

Tang, C. S., “Batching and scheduling
jobs on batch and discrete processors”,
Operations Research 40 (4), 1992, 750–
763.

Baker, K., “Scheduling the production of
components at a common facility”, IIE
Transactions 20 (1), 1988, 32–35.

Chen, B., Potts, C. and Woeginger, G., A
Review of Machine Scheduling:
Complexity, Algorithms and
Approximability, Springer, Boston, MA,
1998.

Coffman, E., Nozari, A. and Yannakakis, M.,
“Optimal scheduling of products with
two subassemblies on a single machine”,
Operations Research 37 (3), 1989, 426–
436.

Dobson, G., Karmarkar, U. and Rummel, J.,
“Batching to minimize flow times on one
machine”, Management Science 33 (6),
1987, 784–799.

Gerodimos, A., Glass, C. and Potts, C.,
“Scheduling the production of two-
component jobs on a single machine”,
European Journal of Operational
Research 120 (2), 2000, 250–259.

Hou, Y., Yang, D. and Kuo, W., “Lot
scheduling on a single machine”,
Information Processing Letters (114),
2014, 718–722.

Feng Zhou
Order Scheduling On a Single Batch Processor

Journal of Supply Chain and Operations Management, Volume 16, Number 1, March 2018

130

Lin, B., “Fabrication scheduling on a single
machine with due date constraints”,
European Journal of Operational
Research 136 (1), 2002, 95–105.

Pinedo, M. L., Scheduling: theory,
algorithms and systems, Springer, New
York, NY, 2008

Santos, C. and Magazine, M., “Batching in
single operation manufacturing systems”,
Operations Research Letters 4 (3), 1985,
99–103.

Vickson, R., Magazine, M. and Santos, C.,
“Batching and sequencing of
components at a single facility”, IIE
Transactions 25 (2), 1993, 65–70.

Yang, D., Hou, Y. and Kuo, W., “A note on
a single-machine lot scheduling problem
with indivisible orders”, Computers and
Operations Research (79), 2017, 34–38.

Zhou, F., Blocher, J., Heese, H. and Hu, X.,
“Optimal single machine scheduling of
products with components and
changeover cost”, European Journal of
Operational Research (233), 2014, 75–
83.

