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We consider the problem of scheduling customer orders on a single batch processor machine. The 
batch processor machine can process up to a certain number of jobs at the same time. Different 
customer orders may be grouped into the same batch for processing and a customer order may also 
be split into multiple batches for processing. Three scheduling objective measures are studied: total 
completion time, the number of late orders and the maximum lateness of orders. For each objective, 
we either show characteristics of optimal schedules or provide a simple polynomial time algorithm 
to develop an optimal schedule. 
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I. INTRODUCTION 

 
There are two types of processing 

technology in manufacturing industry, 
discrete processing and batch processing. In 
discrete processing, a machine can only 
process one job at a time. Jobs are scheduled 
to be processed on the machine sequentially. 
In batch processing, a machine is capable of 
processing up to a certain number of jobs 
(usually of the same type) simultaneously.  

The majority of job/machine 
scheduling literature focus on discrete 
processing setting. This mainstream research 
can be classified according to the 
configuration of machines and the flow of 
jobs, i.e. single machine models, parallel 
machine models, flow shop models and job 
shop models. For each type of model, 
literature can be further classified in term of 
scheduling objective measures, like total 
completion time, the number of late jobs and 
the maximum lateness, etc. Readers who are 
interested in this area can refer to Chen et al. 
(1998) and Pinedo (2008). 

There are a small amount of discrete 
processing scheduling models that also 
include batching operations. In those models, 
jobs of the same family are grouped in the 
same batches and are processed 
consecutively. Setups are performed 
whenever a machine is switched to process a 
new batch of jobs. Batching jobs of the same 
family will save setup time/cost and result in 
improved efficiency for a manufacturer. 
Santos and Magazine (1985), Dobson et al. 
(1987), Baker (1988), Coffman et al. (1989), 
Vickson et al. (1993), Gerodimos et al. 
(2000), Lin (2002) and Zhou et al. (2014) 
studied a variety of single machine 
scheduling problems with batching decisions. 
This research stream is still considered as 
discrete processing in scheduling literature 
because jobs in the same batch are processed 
one at a time consecutively. 

Batch processing in scheduling draws 
much less attention over the years. One 
reason may be related to its limited 
application in manufacturing industry. Hou et 
al. (2014) and Ahmadi et al. (1992) provided 
multiple batch processing examples. One of 
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the examples occurs in a semiconductor 
factory where chips are tested simultaneously 
in a burn-in oven. Hou et al. (2014) studied a 
batch/lot scheduling problem on a single 
machine. In their model, a manufacturer 
needs to group customer orders into multiple 
batches and schedule them on a single batch 
processor to minimize total completion time. 
They showed a key property regarding 
optimal schedules. Their model restricts each 
customer’s order size to be less than the 
capacity of the batch processor. Furthermore, 
a customer order may be split into two 
consecutive batches and its completion time 
is assumed to be the totals of the weighted 
completion time of the two consecutive 
batches. Yang et al. (2017) studied a similar 
problem as Hou et al. (2014). However, they 
require each customer order to be processed 
in the same batch, thus eliminating order split. 
They proposed a binary integer programming 
method and four simple heuristics to solve 
the problem. Ahmadi et al. (1992) presented 
a new class of two-machine flow shop 
scheduling problems in which one machine is 
a discrete processor while the other is a batch 
processor. Two scheduling objective 
measures are considered in their models, the 
makespan and total completion time. They 
analyzed complexities of their models and 
provided either polynomial time procedures 
or heuristics to solve the proposed problems. 

In this paper, we consider a similar 
setting as Hou et al. (2014). However, we do 
not restrict customer order sizes to be less 
than the capacity of a batch processor. We 
require each order to be delivered as a whole 
instead of allowing partial shipments. 
Therefore the completion time of an order is 
when the last batch that contains that order 
completes. Furthermore, we study three 
important scheduling objective measures 
instead of one as in Hou et al. (2014): total 
completion time, the number of late orders 
and the maximum lateness of orders. All of 
the above would make our research a nice 

addition to the existing literature on batch 
processing scheduling. 

 
II. PROBLEM DESCRIPTION 

 
We study a setting where a 

manufacturer has received N customer orders, 
varying in sizes and needs to schedule them 
on a batch processor machine. The machine 
is capable of processing a maximum of b 
units of jobs at the same time, where b is the 
machine’s capacity (or batch size limit). A 
customer’s order size, σi, where i = 1, ..., N, 
may exceed the capacity of the machine, σi ≥ 
b. Therefore the order has to be split into 
multiple batches. The processing time of each 
batch on the machine, u, is constant, 
regardless of types of customer orders or 
sizes. There is no setup time or cost between 
any of two consecutive batches. To better 
utilize the machine’s capacity, if multiple 
batches are required, all batches should be 
full except the very last batch. An order will 
only be delivered to its customer when all of 
its units are completed. Therefore the 
completion time of an order, C(i), i = 1, ..., N, 
is defined as the time when the last batch that 
contains that order is completed. The 
manufacturer needs to group all customer 
orders into multiple batches and schedule 
them on the machine. Three common 
scheduling objectives are considered, 
including the total completion time of all 
orders, the number of late orders, and the 
maximum lateness of orders. The following 
sections will address each objective 
accordingly. 
 
III. MINIMIZING THE TOTAL 
COMPLETION TIME OF ALL 
ORDERS 

 
In a typical manufacturing setting, the 

completion time of an order or a job is used 
to measure how long that order or job and all 
of its associated raw material, parts and 
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components stay in the system. The longer 
the order remains in the system, the higher 
inventory cost it will be. In that sense, 
minimizing the total completion time of all 
orders is the same as minimizing the total 
work-in-process (WIP) inventory cost, which 
has great appeal to manufactures in business 
practice. 
Theorem 1. There exists an optimal schedule 
in which orders are sequenced in 
nondecreasing order of their sizes, σi, then 
arranged to fill up all the batches and 
processed sequentially. 
Proof. Without loss of generality, assume 
order i and j are any two orders in a schedule 
S, where S = (..., i, ..., j, ...) and σi ≥ σj.  

Interchange the position of order i and 
j in the schedule S and it results in a new 
schedule S’. It is clear that the completion 
time of order i in the new schedule S’, CS’(i), 
is the same as the completion time of order j 
in the original schedule S, CS(j), i.e. CS’(i) = 
CS(j). It is also clear that CS’(j) ≤ CS(i) 
because of σj ≤ σi. Therefore, CS’(i)+CS’(j) ≤ 
CS(j)+CS(i). Furthermore, for all of the orders 
in between order i and j, their total 
completion time in the new schedule S’ is no 
more than in the original schedule S because 
σi≥ σj. For all the remaining orders, their 
completion time is unaffected by the 
interchange of order i and j. Therefore the 
total completion time of all orders in the new 
schedule S’ will be no more than in the 

original schedule S, i.e., '

1 1

( ) ( )
N N

SS
i i

C i C i
 

  .  

Repeatedly apply the same 
interchange argument for all the other orders, 
our proof is completed. 

According to Theorem 1, a 
manufacturer would schedule customer 
orders based on their order sizes, from the 
smallest to the largest, and then assign them 
to fill up each batch in sequence. 
 

IV. MINIMIZING THE NUMBER OF 
LATE ORDERS 

 
Minimizing the number of late 

customer orders has great practical 
implication. It is equivalent to maximize the 
percentage of on-time order shipments, 
which is an important performance measure 
a manager needs to constantly monitor and 
evaluate in business practice. A manufacturer 
may not complete all of its orders on time due 
to capacity constraint or other restrictions, 
but it needs to find a way to schedule orders 
to limit the number of late customer orders.  

Each customer order is associated 
with a due date, di, where i = 1,2, ..., N. If the 
completion time of an order is later than its 
due date, C(i) > di, that order is late. We are 
to use a forward algorithm by Pinedo (2008) 
to build a schedule that would result in the 
minimum number of late orders for the 
manufacturer. Before the introduction of the 
algorithm, reorder all customer orders 
according to their due dates in nondecreasing 
order, which is often referred to as the earliest 
due date (EDD) rule, such that d1 ≤ d2 ≤ ... ≤ 
dN. The algorithm will go through N 
iterations. During each iteration, the 
algorithm will select the first order from an 
unscheduled customer order set, Jw, and 
assign it to either an order set, Je, in which all 
of its orders would meet their due dates or the 
other order set, Jl, in which all of its order 
would be considered as late orders. The 
algorithm is presented as follows. 
Step 1. Set Je = ∅, Jl = ∅ and Jw = {1, 2, ..., 
N}. Set the counter n = 1. 
Step 2. Add customer order n to set Je, and 
delete order n from set Jw. Go to the next 
step. 
Step 3. If 
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where ڿxۀ is denoted as the smallest integer 
that is greater than or equal to x. Go to the 
next step.  

Otherwise, denote order m as the 
largest order in set Je, then remove order m 
from set Je and reassign it to set Jl. 
Step 4. Set Jn = Je. If n = N, stop; otherwise, 
set n = n + 1 and go to step 2. 

Once the algorithm terminates, it 
results in three order sets: Je, a set in which 
all of its orders would be completed on time; 
Jl, a set in which all of its orders would be 
completed late; and Jw, which should become 
an empty set. The resulting schedule from the 
algorithm contains two portions: the first 
portion is from set Je, in which orders are 
scheduled in nondecreasing order of their due 
dates; the second portion of the schedule is 
from set Jl in which orders can be sequenced 
arbitrarily. 
Lemma 2. Define an order set J as a feasible 
set, if all of its orders would meet their due 
dates when they are sequenced according to 
EDD rule, like d1≤ d2≤ ... ≤ dN. Then, order 
sets Jn in the forward algorithm are feasible, 
where n = 1, ..., N. 
Proof. We prove by induction. 

It is obvious when n = 1, J1 is 
feasible if σ1≤ d1. Otherwise, J1 is an empty 
set. 

Assume it is true for n = k −1, thus 
order set Jk−1 is feasible. Add order k to 
order set Jk−1 results in a new set J’. 

If the completion time of order k in J’ 
satisfies 

 
'
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then order k will also be completed on time 
in J’. And therefore the order set Jk = J’ is 
feasible. 

If the completion time of order k in J’ 
satisfies 

CJ’(k) > dk 
then remove the largest order m from set J’, 
which results in a new set J’’, where 

'max { }m ii j
 


 . Since σk ≤ σm and dm ≤ dk, 

the resulting set J’’ is also feasible, and Jk= 
J’’. 

Therefore it is also true for when n = 
k, Jk is feasible. 

Our proof by induction is now 
complete. 
Lemma 3. Define an order set J as l−optimal, 
if it is a feasible subset of orders 1, 2, ..., l and 
if it has, among all feasible subsets of orders 
1,2, ..., l, the maximum number of orders. 
Then, for any l > n, there exists an l−optimal 
order set that consists of a subset of Jn and a 
subset of orders n + 1, ..., l. 
Proof. We also prove it by using induction. 

When n = 1, it is clearly true that there 
exists an l−optimal set that consists of a 
subset of J1 and a subset of orders 2, ..., l. 

Now assume it is true for n = k − 1. 
Therefore there exits an l−optimal order set, 
J∗, which consists of a subset of Jk−1 and a 
subset of orders k, ..., l. 

We are to prove it is also true for n = 
k, where there exits an l−optimal order set, J∗∗, 
which consists of a subset of Jk and a subset 
of orders k + 1, ..., l. And we can show J∗∗ can 
be constructed according to the following 
three cases. 

Case 1: Order set Jk consists of Jk−1 

plus order k. To create set J∗∗, just use set J∗. 
Case 2: Order set Jk consists of Jk−1 

plus order k, and subtract order m which does 
not belong to set J∗. Then to create set J∗∗, use 
set J∗ again. 

Case 3: Order set Jk consists of Jk−1 

plus order k, and subtract order m which does 
belong to set J∗. Since Jk−1 plus order k is not 
feasible, there must exist an order p in a set 
that consists of Jk−1 and k, such that p does 
not belong to J∗. Now to create set J∗∗, use set 
J∗ plus order p and subtract order m. It is clear 
that J∗∗ is a subset of Jk and k + 1, ..., l. Since 
J∗∗ has the same number of orders as set J∗, 
we only need to show J∗∗ is also feasible. 
Since J∗∗ differs from J∗ in its intersection 
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with {1, ..., k}, it suffices to verify the 
following two properties: the orders that are 
in the intersection of J∗∗ and {1, ..., k} is also 
feasible, and the total processing time of 
orders that are in the intersection of J∗∗ and 
{1, ..., k} is no more than the total processing 
time of orders that are in the intersection of J∗ 
and {1, ..., k}. The first property is true 
because the intersection of J∗∗ and {1, ..., k} 
is a subset of Jk, which is feasible according 
to Lemma 2. The second property is also true 
due to σp ≤ σm. 

Therefore it is also true for n = k. 
Our induction proof completes. 
Theorem 4. The algorithm yields an optimal 
schedule that minimizes the number of late 
orders. 
Proof. We only need to prove the resulting 
order set Jn in the algorithm is an n−optimal 
for n = 1, ..., N. By induction, it is clearly 
true for n = 1. 

Assume it is also true for n = k − 1, 
thus Jk−1 is a (k − 1)−optimal. According to 
Lemma 3, the set that consists of Jk−1 and k 
must contain a k−optimal set. If Jk, a feasible 
set by Lemma 2, consists of the entire set Jk−1 

plus k, it must be k−optimal. If set Jk−1 plus 
order k is not feasible, the k−optimal set must 
be a smaller set within the set of Jk−1 and k; 
but it must have at least the same number of 
orders as set Jk−1. Set Jk clearly satisfies this 
condition and Jk is a k−optimal set. Therefore 
it is also true for n = k. 

Our induction proof now completes. 
The algorithm examines each order in 

set Jw and then place them in either set Je or 
Jl. If a new added order in set Je is considered 
as late order, the largest order in set Je would 
be removed and then placed in set Jl. This 
process would ensure small orders with early 
due dates be scheduled earlier while large 
orders with late due date would be scheduled 
at later time. In such a way, the number of late 
orders is minimized. 

 

V. MINIMIZING THE MAXIMUM 
LATENESS OF ORDERS 

 
Another due date related objective is 

the maximum lateness of customer orders. 
The maximum lateness measures a 
manufacturer’s worst performance regarding 
meeting due dates. When a manufacturer is 
unable to complete all orders by their due 
dates, it has great incentive of limiting the 
maximum lateness of its orders. That is 
because a customer may cancel its order if it 
is too late and may never order again from 
that manufacturer. The lateness of a customer 
order is the difference between its completion 
time and due date, i.e., L(i) = max[C(i) – di, 
0], where i = 1, ..., N. 
Theorem 5. There exists an optimal schedule 
in which all of the orders are sequenced in 
nondecreasing order of their due dates, such 
that d1 ≤ d2 ≤ ... ≤ dN. 
Proof. Assume there are two consecutive 
customer orders, i and j, in a schedule S, such 
that S = {..., i, j, ...} and di ≥ dj. We are to 
show interchange order i and j in the schedule 
would either decrease or not affect the 
maximum lateness. 

It is obvious when order i and j are 
swapped, it would not affect the completion 
time of all the other orders, and therefore 
would not affect the lateness of all the other 
orders. Denote L∗ as the maximum lateness of 
all the other orders, i.e., L∗ = max{Ln}, where 
n ≠ i, j.  

Before order i and j are swapped, we 
have 

Lmax=max{C(i)-di, C(j)-dj, L∗} 
After order i and j are swapped, we 

have 
L’

max=max{C’(i)-di, C’(j)-dj, L∗} 
where C’(i) = C(j) and C’(j) ≤ C(j). 

Since di ≥ dj, it leads to C’(i) – di ≤ C(j) 
− dj. Because C’(j) ≤C(j), it results in C’(j) − 
dj ≤ C(j) − dj. Therefore we can conclude L’

max 
≤ Lmax. 
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Repeatedly applying the pairwise 
interchange argument for all the other orders 
completes the proof. 

Theorem 5 shows to minimize the 
maximum lateness of orders, a manufacturer 
needs to prioritize orders with earlier due 
dates in its schedule, i.e. process customer 
orders with the earliest due date first, then 
followed by orders with increasing due dates. 
 
VI. CONCLUSION 

 
This paper studied a customer order 

scheduling problem for a manufacturer who 
is equipped with a single batch processor 
machine. Customer orders vary in sizes and 
may be larger or smaller than the capacity of 
the batch processor machine. Different 
customer orders may be grouped into the 
same batch for processing and an order may 
be split into multiple batches. A customer 
order cannot be delivered until all of its units 
are completed. Three popular scheduling 
objective measures are studied in the paper, 
including the total completion time of all 
orders, the number of late orders and the 
maximum lateness of orders. For each 
objective measure, we either show properties 
of optimal schedules or develop a simple 
polynomial time algorithm that would result 
in an optimal schedule. 

There has been limited research in 
batch processing scheduling compared to 
discrete processing scheduling. The main 
reason is its limited industry applications. 
However, as examples shown in Ahmadi et al. 
(1992) and Hou et al. (2014), there are 
noticeable industry applications for batch 
processing, like semiconductor 
manufacturing, production of adhesives and 
paint, bakery and water purifying industry. 
As new technology/machinery being 
developed, it is reasonable to believe batch 
processing will find more usage in practice. 
This paper extends the existing literature on 

batch processing and hopefully would draw 
more research interests in future. 

As for future research, it is 
worthwhile considering the case when a 
manufacturer does not permit grouping 
different customer orders into the same batch 
for processing. This may occur because of the 
varying processing requirements (like 
processing time or processing temperature) 
for different customer orders. 
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