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We study a stochastic scheduling problem for outbound deliveries of customer jobs at a clinical 
laboratory’s patient service center. Patient specimens are collected at the remote service center 
throughout the day and are loaded onto a limited number of vehicles, which deliver them to the 
central laboratory for testing. The problem is to determine vehicle departure times in order to 
minimize total job waiting time at the service center. We derive optimal scheduling solutions 
from theoretical developments for both stationary and non-stationary Poisson arrivals under 
stylized conditions, and further develop heuristics for more general cases. Simulation 
experiments verify the managerial insight we gain from the theories that a pull-based dispatching 
policy outperforms the common practice in general cases.  
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I.    INTRODUCTION AND  
       BACKGROUND  
 

Clinical laboratory testing is central to 
patient diagnosis and treatment as well as 
clinical trials and medical research. Every year 
over 7 billion laboratory tests are performed in 
the United States and nearly 75% of medical 
decisions are based on laboratory tests (ACLA, 
2014). Laboratory tests enable early detection 
and prevention of diseases, saving time, costs, 
and lives. While some hospitals have in-house 
diagnostic units, many hospitals and smaller 
clinics today outsource ancillary services like 
laboratory testing to third-party service 
providers to avoid heavy capital costs and 
staffing difficulties. Centralized testing is 
becoming an increasing trend for quality 
assurance and consistency reasons (Laczin, 

2013). Integration and standardization of 
laboratory systems can improve efficiency and 
effectiveness of medical operations 
(Hernandez et al., 2005). Changes in health 
care reimbursement policies in the United 
States have also resulted in significant 
consolidation of diagnostic units (Sautter and 
Thomson, 2015).  

Consider a large laboratory service 
provider centrally located in a southwestern 
state of the United States that has a high-
volume production environment. The 
centralized laboratory receives specimens from 
all over the state and conducts over 54 million 
diagnostic laboratory tests per year. Besides 
the centralized laboratory, the system includes 
over 70 patient service centers distributed 
throughout the state in not only metropolitan 
areas but also rural areas and small towns (Fig. 
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1). A patient goes to a nearby service center 
for specimen collection after his or her doctor 
prescribes the laboratory tests. Collected blood 
samples and other specimens are then 
delivered to the central laboratory located in 
the center of a major metropolitan area. There, 
the diagnostic tests are performed, and the 
results are sent back to the doctors and their 
patients.  

Provision of rapid results has been a 
major concern, since it has a significant impact 
on patient care. Therefore, fast delivery of the 
specimens from the patient service center to 
the central laboratory is necessary. This is 
especially important for microbiology 
specimens as optimal analyses require viable 
organisms (Sautter and Thomson, 2015).  

This research focuses on a remotely 
located patient service center. The site collects 
a significant amount of patient specimens on a 
daily basis, but lacks sufficient resources to 
preserve the samples and therefore a fast 
delivery is important. However, the site owns 

only a limited number of vehicles (minivans) 
to deliver the specimens to the central 
laboratory. Because of its remote location, the 
site cannot participate in a transportation 
system that has vehicles driving around the 
metropolitan area to collect specimens from 
various locations and drop them off at the 
central laboratory. Each vehicle the remote site 
owns can make only one trip per day to the 
central laboratory as the round trip takes about 
8 hours. While the current schedule has 
vehicle drivers set out for delivery in an evenly 
distributed manner throughout the day, the 
management seeks to improve the scheduling 
of the outbound deliveries from this patient 
service site, to reduce the time specimens sit at 
the site waiting while patients walk in on a 
random basis. This paper contributes to the 
operations management literature as well as 
medical practices by providing theoretical 
properties and managerial insights for this 
unique stochastic scheduling problem.  

 

 

 
FIGURE 1. DISTRIBUTION OF PATIENT SERVICE CENTERS. 

Source: https://www.sonoraquest.com/
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The rest of the paper is organized as 
follows. Section II provides a problem 
definition and literature review for this 
scheduling issue. Section III derives optimal 
properties under various conditions. Section 
IV conducts simulation experiences of several 
scheduling policies to provide managerial 
insights, and conclusions are drawn in Section 
V.  

 
II.    PROBLEM DEFINITION AND  
        LITERATURE 

 
Hawkins (2007) reviews the literature 

on hospital laboratory management and 
indicates that the completion time from a test 
request to the delivery of results is a key 
performance measure; however, this is the 
measure with which medical professionals are 
least satisfied (Jones et al., 2006). Operations 
management principles have been applied to 
help hospital laboratories improve 
performance. Such efforts include increasing 
capacity (Berry 2006), reducing duplicated 
workload (Beland et al., 2003; May et al., 
2006; Georgiou et al., 2007), batching 
(Persoon et al., 2006), and introducing staffing 
and processing flexibility (Levandrowski et al., 
2004; Steindel and Howanitz, 1993; 
Winkelman et al., 1994). These studies are 
done in hospital settings where transportation 
of specimens happens within the hospital 
facility. To the best of our knowledge, vehicle-
based transportation problems for centralized, 
third-party laboratory services have not been 
studied in the literature, whereas transportation 
(and waiting for transportation) can be the 
largest part of the turnaround time of 
centralized laboratory tests.  

The vehicle departure scheduling 
problem we address in this research is a job 
release control problem in which a physical 
release constraint exists. The objective is to 
minimize the total job waiting time at a gate 
block before stochastically arrived jobs are 
released for service, delivery, or other 

processes, as the gate can be opened only for a 
limited number of times in a certain time 
period. In this case, a remote patient service 
site collects blood samples and other 
specimens from patients throughout a day but 
has only a few vehicles available to carry the 
samples to the central clinical laboratory. Job 
release control is an important operational 
decision to make in manufacturing 
environments in order to regulate factory 
workload or avoid bottleneck starvation 
(Fowler et al., 2002; Bowman, 2002; Duenyas 
et al., 1994; Glassey et al., 1988; Gupta et al. 
2006; Kim et al, 1998; Choi and Chung, 2013), 
or to reduce job waiting time or 
lateness/tardiness (Melnyk and Ragatz, 1989; 
Ragatz and Mabert, 1988; Zozom et al., 2003; 
Park and Morrison, 2014). On the other hand, 
job release problems in service and logistics 
systems in which physical constraints may 
exist to limit the number of times jobs can be 
released for service or delivery in a certain 
period of time are largely overlooked in the 
literature. How to allocate the restricted 
number of releases during the time period has 
a significant impact on the quality of service 
measured by the timeliness of the delivery of 
the service.  

In this research, customer jobs are 
collected specimens ready for delivery from 
the patient service center to the central 
laboratory. Job arrivals are random but follow 
a known stochastic pattern in the given time 
period T. Specifically, we assume that job 
arrivals follow a Poisson process, either 
stationary or nonstationary. In practice, the 
pattern can be obtained by analyzing historical 
demand data. 

Jobs can be released for exactly m 
times during the given time period T. Arrived 
jobs wait at the “gate”. Assume process 
capacity is sufficient so that, as soon as a 
release occurs, all jobs currently waiting are 
released for processing and their waiting times 
at the “gate” are added into the total waiting 
time. In this study, patient specimens are small 
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packages, and a vehicle always has sufficient 
space to load all waiting specimens. Job flow 
times after the release (i.e., driving on the 
route, sample unloading, sample preparation, 
and testing at the central laboratory) are 
considered sunk costs and are not counted in 
the performance measure. Future jobs will 
accumulate at the “gate” again and wait for the 
next release.  

The last release always happens at the 
end of the period. The problem is therefore to 
allocate or schedule the (m – 1) releases during 
the period to minimize total waiting time. 
 
III.    OPTIMALITY UNDER STYLIZED  
          DEMAND PATTERNS 
 

In this section we present our findings 
for two kinds of demand arrival patterns: a 
stationary Poisson process and a nonstationary 
Poisson process.  Let  be the departure time 
of the ith release, i = 1,⋯ , , where m is the 
total number of releases within the planning 
cycle, and . 

 
3.1. Stationary Poisson Arrivals  
 

The customer jobs arrive at the patient 
service center’s outbound area according to a 
stationary Poisson process with constant rate λ. 
Theorem 1 shows that evenly distributing the 
vehicle releases along the planning horizon is 
the optimal scheduling strategy in terms of 
minimizing the total waiting time of all 
specimens.  

 
Theorem 1. To minimize the total expected 
waiting time of all specimens on all vehicles 
under stationary Poisson arrivals, the optimal 

departure time of the ith release is ∗ .  

 
Proof:  Prove by sample path. Let N(T) denote 
the total number of job arrivals before time T. 
For any given K, that N(T) = K, we prove the 

optimal departure time for the ith vehicle is 

.  

Given N(T) = K, the total expected waiting 
time of all K specimens is 
 
 ∑ 1

1 ⋯

1  

= ∑ ! ⋯

∑ ! ⋯

⋯	 ∑ ! ⋯  

=	 ! ∑

⋯  

= ! ∑

⋯ , 

 
where { , … , } is the order statistics of 
K independent uniform random variables 

, ⋯ ,  on [0, T], and the joint density 

function of { , … , } is ! . 

From solving the first order conditions of 
, , ⋯ , : 

 
2 0 

2 0 
2 0 

⋮ 
2 0, 

 
We can get the optimal departure time of the 

ith vehicle  ∗ .  

                                            
3.2. Non-stationary Poisson Arrival 
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Assume the jobs arrive at the patient 
service center’s outbound area according to a 
non-stationary Poisson process with arrival 
rate  at time t.  has an upper-bound ̅. 
We first present the result for the general case 
by constructing the conditions the optimal 
release schedule should satisfy in Theorem 2. 
Then we study the optimal scheduling problem 
for the case of m = 2 with specified arrival 
patterns.  

 
Theorem 2. To minimize the total expected 
waiting time of all specimens on all vehicles, 
the optimal departure times ∗ , ∗, ⋯ , ∗  
satisfy the following equations: 
 

 

 

⋮ 

 

 
Proof: By the thinning theory, the non-
stationary Poisson Process with rate  at 
time t can be constructed as a process split 
from the stationary Poisson process with 
constant arrival rate ̅  by performing a 
Bernoulli trial at any time t with success 
probability / ̅.   
Then we first construct the stationary Poisson 
process with rate ̅  by generating the order 
statistics { , …, } of K independent 
uniform random variables , ⋯ ,  on [0, 
T] given N(T) = K, where N(T) is the total 
number of arrivals by time T for the stationary 
Poisson process with rate ̅. Among these K 

arrivals, with probability ,	 an arrival is 

considered as a specimen arrival accepted by 
the service center, i.e., an arrival from the 
non-stationary Poisson Process with rate 	.  

Prove by sample path. Denote / ̅. 
Given N(T) = K, the total expected waiting 
time of all specimens is 
 

∑ 1

1 ⋯

1  

= ∑ ! ⋯

∑ ! ⋯

⋯	

∑ ! ⋯  

=	 ! ∑

⋯

 

=	 ! ∑

⋯

 

 
We only need to find , , ⋯ ,  to 
minimize ⋯

. 

The optimal departure time ∗ , ∗,⋯ , ∗  
should satisfy the following first order 
conditions: 
 

 

 

⋮ 
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FIGURE 2. FOUR STYLIZED CASES. 

 
 
 

Note that the integral on the left hand 
side of each first order condition above is the 
work-in-process (WIP) inventory of the 
vehicle release. Solving the optimal release 
time for each vehicle is to determine the best 
threshold for the WIP of each release.  

 
Examples of Non-Stationary Poisson 

Arrivals with m = 2 
 
When there is a total of two vehicle 

releases, i.e., m = 2, according to Theorem 2, 
the optimal release time of the first vehicle 
∗	 satisfies . Below 

we solve the optimal scheduling problem for 4 
special cases as illustrated in Fig. 2.  

 
Cases 1 and 2 assume a linear trend in 

the arrival rate. We find that as long as the 
arrival rate linearly changes during the 
planning horizon, the optimal release time of 
the first vehicle only depends on the sign of 
the arrival rate curve. It is independent of the 
specific slope of the arrival rate.  

 
Case 1: Work flow arrival rate linearly 
increases from zero to  within the planning 
horizon: 
 

.  
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Optimal departure time of the first release 
∗ . 

Case 2: Work flow arrival rate linearly 
decreases from  to zero within the planning 
horizon: 
 

.  
 
Optimal departure time of the first release  
∗ 1 √ . 

 
Cases 3 and 4 assume the arrivals achieve 
peak(s) during the planning horizon. In both 
cases, the arrival rate exhibits a symmetric 
pattern during the planning horizon. 
Interestingly, we find that the optimal release 
times of the two vehicles are not evenly 
distributed. 
 
Case 3: Work flow linearly increases from 
zero during the first half of the planning 
horizon, then linearly decreases to zero during 
the second half of the planning horizon:  
  
 , 
	 	 ; ,	 

 .	 
 
Optimal departure time of the first release 
∗ 1

√
. 

 
Case 4: Work flow arrival achieves the first 
peak in the middle of the first half of the 
planning horizon, then achieves the second 
peak in the middle of the second half of the 
planning horizon:  
 

,	 

	  ;	 ,	 

 	 ;	 ,	 

 	  ; ,	 

 	 .  

 
Optimal departure time of the first release 
∗

√
. 

 
IV.    HEURISTICS AND SIMULATION  
         STUDIES FOR GENERAL CASES 

 
The optimality development in Section 

III under stylized cases provides insights for 
developing decision heuristics for general 
cases. It is shown that the optimal schedule 
does not have an even time-between-departure 
distribution in general cases with 
nonstationary Poisson arrival rates. However, 
it is straightforward to show that the 
distribution of the departure times should be 
more even when the case becomes more 
approximate to the stationary case; i.e., if the 
arrival rate has a larger positive intercept and 
smaller slope (in absolute value). A number of 
vehicle release heuristics are proposed for 
general cases where the nonstationary Poisson 
arrival rate does not follow a stylized pattern. 
The arrival rate’s pattern can be estimated 
using historical data in practice. As an 
example, Fig. 3 summarizes the estimated 
arrival rates at the patient service center’s 
outbound area across 30-minute time buckets 
on a common day. Each 30-minute sub-period 
has a different expected number of arrivals. In 
this example, the expected number of arrivals 
is 6 between t = 0 and t = 30 (min), and 20 
between t = 30 (min) and t = 60 (min), etc.  

We keep the decision rule that the mth 
vehicle must depart at the end of the time 
period T so that all specimens collected within 
the planning horizon will be released. The 
proposed departure scheduling heuristics are 
as follows.  

1) Uniform (UN):  the m releases are 
performed with equal time intervals 
between them. This is the common 
practice adopted by patient service 
centers.  
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FIGURE 3. SAMPLE JOB ARRIVAL RATE PATTERN (SEMI-HOURLY RATES). 
 
 
2) Random (RN): the first (m – 1) 

releases are randomly scheduled during 
the time period with a uniformly 
distributed inter-release time.   

3) Workload Regulation (WR): the m 
releases are scheduled such that each 
release will carry the same expected 
number of jobs based on forecasted job 
arrivals.  

4) Peak Time Releases (PT): the first (m 
– 1) releases are scheduled at the end 
of the (m – 1) sub-periods with the (m 
– 1) highest expected number of job 
arrivals among all sub-periods except 
for the last sub-period.  

5) WIP Cap (WIPC): a WIP limit is set 
at the “gate” and as soon as the number 
of waiting jobs hit this limit, all waiting 
jobs are released. Future jobs then need 
to pile up and wait for the next time 
this limit is hit. This is done for the 
first (m – 1) releases while all 

remaining jobs will be released by the 
last release. The WIP cap can be 
chosen using optimization-via-
simulation for a given demand pattern.  

6) Longest Waiting Time Cap (LWTC): 
as soon as the waiting time for the 
earliest job currently waiting at the 
“gate” exceeds a given threshold, all 
waiting jobs are released. The waiting 
time is measured when a new job 
arrives and therefore at each release the 
last arrived job has a waiting time of 
zero. Future jobs then need to pile up 
and wait for the next time this 
threshold is hit. This is done for the 
first (m – 1) releases while all 
remaining jobs will be released by the 
last release. The cap can be chosen 
using optimization-via-simulation for a 
given demand pattern. 

7) Cumulated Waiting Time Cap 
(CWTC): as soon as the cumulated 
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waiting time for jobs currently waiting 
at the “gate” exceeds a given threshold, 
these jobs are released. The cumulated 
waiting time is measured when a new 
job arrives and therefore at each release 
the last arrived job has a waiting time 
of zero. Future jobs then need to pile 
up and wait for the next time this 
threshold is hit. This is done for the 
first (m – 1) releases while all 
remaining jobs will be released by the 
last release. The cap can be chosen 
using optimization-via-simulation for a 
given demand pattern. 
 
Policies 5~7 are dispatching policies 

under which releases are triggered by the 
arrival of a job, whereas Policies 1~4 are 
scheduling policies under which releases are 
scheduled in advance. While none of the above 
policies guarantees optimality in a general 
stochastic case, it is straightforward to show 
that in a dispatching operation the (m – 1) 
release times in any optimal solution must 
coincide with certain job arrival times. Note 
that in this vehicle departure problem, a job 
arrival is defined as a collected patient 
specimen package that is ready for delivery.  

 
Theorem 3. To minimize the total waiting 
time of all specimens on all vehicles, the 
optimal departure times ∗ , ∗,⋯ , ∗  must 
equal certain job arrival times.   
 
Proof:  Prove by contradiction. Assume that 
there exists an optimal solution such that the 
jth release time  is different from any job 
arrival time. Assume that  is between the 
arrival times of job i and job (i + 1). A feasible 
solution can always be constructed by 
bringing forward  to the arrival time of job i, 
which has a known arrival time as it has 
arrived before . This operation will strictly 
decrease the total waiting time of the jth 

release. However, the total waiting times of 
other releases will not be changed.  
 

Theorem 3 indicates that a dispatching 
approach needs to be incorporated into the 
departure schedules in order to minimize total 
waiting time. However, this may create 
implementation difficulties in common 
practice as vehicle drivers need instructions as 
simple as setting out at a given time. 
Nonetheless, we keep the dispatching policies 
in our comparative study and assume that in 
practice it is feasible to ask a driver to get 
ready earlier with a sufficient buffer time and 
set out as soon as a given job arrival signals 
the departure.  

Discrete event simulation models are 
coded on Matlab and simulation experiments 
are performed with the following parameters: 

 
 Time Period: T = 480 minutes 
 Release Constraint: m = 4 

 
Note that it is not necessarily to let the 

first three vehicles carry the same thresholds 
(WIP, LWT, or CWT Caps) for Policies 5 ~ 7. 
The threshold parameters are optimized using 
a response surface method with designed 
simulation experiments under the given 
demand pattern (Fig. 3). Let  be the 
expected total number of job arrivals in T. 
Table 1 lists the design points for data 
collection in a factorial 2 	 design of 
experiments for the example of parameterizing 
the WIP Caps. At each design point, 10 
replicates are simulated to collect the total 
waiting time performance data. A second-
order polynomial response surface model is 
fitted with a significant curvature and the best 
WIP Cap setting is derived from the fitted 
model. The same procedure is implemented to 
parameterize the LWTC and CWTC policies 
under the same given demand pattern as 
shown in Fig. 3.  
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The parameterized heuristics (Policies 
5 ~ 7) are then put into comparison among all 
policies. A two-stage Ranking and Selection 
procedure (Dudewicz and Dalal, 1975) is 
followed to select the best of the 7 systems 
(policies) without running too many 
replications. In the first stage, 30 replicates are 
performed for each of the 7 systems. Total 
sample size needed for each system is 
calculated and additional replications are made 
in the second stage. The overall weighted 
sample mean of a system is calculated as a 
linear combination of the first-stage sample 

mean and the second-stage sample mean. 
Simulation results are presented in Table 2. 
UN is a common practice and can be used as 
the baseline for comparison purposes. Since 
the Ranking and Selection procedure 
guarantees that the performance differences 
between UN, WIPC, LWTC, and CWTC are 
statistically significant, we conclude that 
WIPC should be selected for the given demand 
pattern. The results verify the managerial 
insight we gain from the theories that pull-
based dispatching policies outperform the 
common practice in general cases. 

 
 

TABLE 1. DESIGN POINTS FOR PARAMETERIZING THE WIPC POLICY USING 
DESIGNED SIMULATION EXPERIMENTS UNDER THE GIVEN DEMAND 

PATTERN. 
 

Design Points Vehicle 1 WIP Cap Vehicle 2 WIP Cap Vehicle 3 WIP Cap 
-1, -1, -1 0.8  / 4 0.8  / 4 0.8  / 4 
-1, -1, +1 0.8  / 4 0.8  / 4 1.2  / 4 
-1, +1, -1 0.8  / 4 1.2  / 4 0.8  / 4 
-1, +1, +1 0.8  / 4 1.2  / 4 1.2  / 4 
+1, -1, -1 1.2  / 4 0.8  / 4 0.8  / 4 
+1, -1, +1 1.2  / 4 0.8  / 4 1.2  / 4 
+1, +1, -1 1.2  / 4 1.2  / 4 0.8  / 4 
+1, +1, +1 1.2  / 4 1.2  / 4 1.2  / 4 

Center point (0,0,0)   / 4   / 4   / 4 
 
 
 

TABLE 2. TOTAL WAITING TIME PERFORMANCES (IN MINUTES) FROM THE 
SIMULATION STUDIES. 

		 UN RN WR PT WIPC LWTC CWTC 

First-stage mean 14602.387 27601.56 20786.293 16017.733 14360.893 14368.613 14403.653 
Total 
replications 

31 164 342 62 93 78 52

Second-stage 
mean 

14930.24 27707.253 20501.387 16476.827 14245.373 14374.827 14261.64 

Overall mean 14641.933 27693.12 20520.68 16320.333 14273.067 14373.107 14324.973 

Benchmarking (vs. UN) 13051.19 5878.747 1678.4 -368.866 -268.826 -316.96 
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V.    CONCLUSION REMARKS 
 
The outbound vehicle departure 

scheduling problem in this research is modeled 
as a job release control problem with physical 
release constraints. The objective is to 
minimize total job waiting time before they are 
released. Theoretical developments in Section 
III by using the thinning theory hint that the 
optimal solution for a general case has a WIP 
cap for each release. This is illustrated in 
Section IV that a parameterized WIPC policy 
outperforms the other heuristic decision 
policies in a general case. The LWTC and 
CWTC policies also perform well since they 
set an upper bound (worst-case scenario) on 
the performance measure. The simulation-
based procedure can be easily automatized in a 
software package to assist operational 
decisions.  

In practice, stochastic job arrival 
patterns can be estimated by analyzing 
historical data. If the job arrival rate is 
stationary throughout the day, the UN policy is 
optimal; whereas this is unlikely to be the case 
in practice. Meanwhile, UN is the de facto 
common practice and the simulation results in 
Section IV show that UN is a reasonable 
scheduling policy with an acceptable 
performance. To further improve the 
operational performance of total job waiting 
time, dispatching policies such as the WIPC 
need to be implemented. The dispatching 
policies are “pull” strategies that release jobs 
based on system status and their 
implementation is not as easy as scheduling 
policies such as UN. A future research 
direction is to develop a way to streamline the 
implementation of a dispatching policy in 
practice so that a good buffer can be provided 
for vehicle drivers to get ready for departure 
ahead of time. This logistics problem can be 
extended to the case of optimizing the entire 
looped supply chain in which patients provide 
jobs and receive final results from the central 
laboratory. We also suggest future research to 

explore the use of supervised machine learning 
to dynamically forecast demands and select the 
best job release solutions in various business 
applications. For example, push notification 
scheduling on mobile devices has a similar job 
release scheduling/dispatching problem with 
release constraints due to energy concerns and 
user requirements. In this case, both the 
stochastic demand pattern (message arrivals) 
and user behaviors need to be studied in a 
dynamic manner.  
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