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This paper analyses and provides insights into the time buffer size of a capacity constrained 
resource (CCR) with multiple parallel processes in the context of the Theory of Constraints (TOC). 
The appropriate capacity size would protect the CCR from becoming idle with a certain 
probability, denoted as the accepted idle rate. We formulate a constrained optimization model, 
where the key decision variable is the capacity size, and the objective is to maximize the net profit. 
For the in-depth understanding of the model’s solutions, we conduct a sensitivity analysis of the 
optimal capacity size and net profit based on variations of the model parameters, i.e., accepted idle 
rate, arrival rate, processing rate, and cost characteristics. We prove the existence of important 
thresholds for these model parameters, and we explore the behavior of the optimal solutions 
depending on the values of these parameters.  
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I.    INTRODUCTION 
 

The Theory of Constraints (TOC) has 
been widely recognized as a well-established 
theory and application of modern business 
management (Naor, Bernardes and Coman 
2013, Spector 2011, Gupta and Boyd 2008, 
Inman, Sale and Green Jr. 2009, Mabin and 
Balderstone 2003). The fundamental work of 
Eliyahu Goldratt (Goldratt and Cox 1992, 
Goldratt 1990) paved the way for the 
development of the TOC framework. In the 
core of his theory is the important recognition 
of a system constraint that limits the system’s 
ability to achieve its goal (Goldratt and Cox 
1992). This constraint is typically described as 
a physical constraint, such as a machine or 
space with limited capacity, or a raw material. 
The constraint can be also identified as a 

company’s policy or behaviour constraint. In 
this paper, we focus exclusively on a physical 
constraint, i.e., the capacity constrained 
resource (CCR).  According to TOC, the system 
results including product throughput, operating 
expenses, and overall system profitability, are 
fully associated with a proper management and 
scheduling of CCRs (Goldratt 2010, Inman, 
Sale and Green Jr. 2009, Corbet and Csillag 
2001). 

The drum-buffer-rope (DBR) method is 
a cornerstone of the TOC constraints’ 
management system; it is widely accepted by 
the research and business communities as a 
principal way to do effective production 
scheduling (Tseng and Wu 2006, Ye and Han 
2008, Tukel, Rom and Eksioglu 2006).  The 
DBR’s centrepiece is a time buffer that 
establishes a protection of the CCR, and thus 
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does not allow the entire production system to 
slow down or reduce its productivity despite the 
fluctuations of the resource capacity or 
production demand. The subject of managing 
the time buffer in front of a single-process CCR 
is discussed in various literature sources (Gupta 
and Boyd 2008, Hadas, Cyplik and Fertsch 
2009, Hwang, Huang and Li 2011, Lee, et al. 
2009, Radovilsky 1998).  

The issue of CCR and its time buffer is 
relevant to more than just one particular 
resource or process. In many cases and for 
various processes there may be a capacity 
constrained resource with several processes 
(activities) working simultaneously on the same 
product, which may be defined as a CCR with 
parallel processes. Plentiful examples of 
parallel processes can be seen in a variety of 
business scenarios, e.g., check-out lines in a 
supermarket, parallel security check lines in an 
airport, parallel conveyors of goods production 
in a manufacturing company, etc. However, 
despite the present extensive research on DBR 
and its time buffers, optimization models and 
tools for identifying time buffers for a system 
with parallel processes are still not well 
established and utilized.       

This paper expands the existing 
research of the DBR’s time buffer by focusing 
on its optimization in CCRs with parallel 
processes. The paper structure incorporates the 
following sections. In the next Section 2 we 
analyse numerous literature sources on buffer 
size and its calculations, with the emphasis on 
the current research in buffer size optimization 
for parallel processes. In Section 3, we present 
our optimization model for a capacity (buffer) 
size in front of the CCR with parallel processes. 
An extensive numeric sensitivity analysis of the 
optimal solutions to the proposed model is 
given in Section 4, with conclusions presented 
in Section 5 of the paper.    

 
     

II.    LITERATURE REVIEW 
 

A variety of methods and approaches 
have been created to address the DBR’s time 
buffer size. They range from introducing 
relatively simple formulas for identifying time 
buffers to presenting sophisticated quantitative 
analytical tools for time buffer analysis. A 
group of researches (Hadas, Cyplik and Fertsch 
2009) develop a set of empirically-driven 
formulae that define the time buffer as a ratio of 
a real lead time at a CCR and the production 
capacity excess of non-critical resources. 
Newbold (1998) designed a method of 
identifying a buffer size for a project CCR, 
which is based on each task’s duration 
uncertainty. The author recommends that the 
buffer size should be empirically defined as a 
double value of the standard deviation for to the 
entire set of project tasks. 

The more sophisticated research 
methods and tools are being used to optimize 
the time buffer size. Ye and Han (2008) 
describe an analytical approach based on 
reliability analysis that determines the size of a 
constraint buffer and assembly buffer in a 
DBR-controlled production system. They 
analyse the situation with one regular or 
assembly CCR in an in-line production process, 
but stop short of considering a production 
environment with a CCR for many parallel 
processes. Long and Ohsato (2008) analyse the 
DBR application for a project with possible 
activities’ uncertainty and delays. Using the 
fuzzy numbers approach, they determine the 
buffer size as a square root of the sum of the 
squares of safety times estimated by fuzzy 
numbers. However, this fuzzy logic analysis 
does not realistically provide an optimized 
approach to identify the buffer size. Similarly to 
that, Bie, Cui and Zhang (2012) analyse the 
effects of the dependence between activities on 
project duration performances, and introduce a 
method for determining buffer sizes with the 
dependence assumption between activities.  

Another approach for calculating the 
optimal time buffer size is based on formulating 
the problem as a queuing model. General ideas 
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of identifying an optimal buffer size using the 
queuing theory are presented in the paper by 
Ghosh and Weerasinghe (2008). The proposed 
optimization algorithm is based on minimizing 
the queuing network costs only; it does not 
incorporate the important in TOC trade-off 
between the throughput revenue and operating 
expenses associated with the buffer size 
(Goldratt 2010). Using the latter approach, 
Radovilsky (1998) identify the optimal size of 
the time buffer by formulating the problem in 
terms of a single-server finite queue. The author 
defined the optimal number of units waiting in 
front of the CCR that would maximize the 
CCR’s operational profits while protecting the 
constrained resource from becoming idle. 
However, the introduced optimization of buffer 
size (Radovilsky 1998) was based on a CCR 
with a single process. It did not take into 
consideration CCRs with multiple parallel 
processes. 

A review of the existing literature 
reveals a limited number of papers that discuss 
identification of the time buffer with multiple 
processes. Shaaban and McNamara (2009) 
develop a simulation algorithm to analyse the 
operating performance of parallel production 
lines that contain unbalanced buffer storage 
sizes. The metrics that was used to analyse the 
simulated line behaviour included idle time and 
average buffer level output, for which a variety 
of statistical tools were employed. Louw and 
Page (2004) develop the calculation of a time 
buffer which is based on a queuing model with 
multiple servers utilizing non-Poisson arrival 
processes and non-exponential service time 
distributions (GI/G/m). Sirikrai and Yenradee 
(2006) propose a new scheduling method, the 
modified DBR, which applies a backward finite 
capacity scheduling technique, including 
machine loadings and detail scheduling, instead 
of the rope mechanism in DBR.  

Overall, in the described research for 
the buffer size calculations in a multi-process 
environment, the time buffer was not 
introduced as a part of the DBR-based system 

analysis. Moreover, these papers do not 
consider the TOC trade-off between the 
throughput (revenue) and operating expenses as 
a way to identify the optimal buffer size. 
Radovilsky and Frankel (2013) attempted to 
address those points. Their model is formulated 
in terms of a finite multi-server queue, in which 
a CCR is defined as a part of the process with 
multiple parallel channels. The optimal buffer 
size for this multi-channel CCR is identified by 
maximizing the profit received as a trade-off 
between the throughput and operating 
expenses, the elements of financial 
measurements in TOC (Goldratt 2010). In this 
paper, the specified research (Radovilsky and 
Frankel 2013) is used as a basis for developing 
a new modelling approach in Section 3. We also 
provide in section 4 an extensive numeric 
analysis of the model’s optimal results and their 
sensitivity to variations of the model’s 
parameters.       

 
III.    MODEL DESCRIPTION AND  
          ANALYSIS  
 

In this section, we consider a production 
or service CCR with a multi-server parallel 
processing with 𝑠	servers (s >1), for which we 
need to identify an optimal time buffer size. 
This system will be described as an M/M/s/K 
queue (Gross et al. 2008). The assumptions of 
the Poisson arrival and exponential service time 
in this queue are frequently employed in 
literature sources for analysing production 
systems with finite multi-server queues (see, for 
example, Feng, Zheng and Li 2012, R. Inman 
1999, Askin and Standridge 1993, Simon and 
Hopp 1991).The "arrival of a customer" simply 
means that a new incoming product unit is 
added to the time buffer, with the average of 𝜆 
units per unit time. The service of those units is 
then done as an operation of utilizing products 
from the time buffer to the parallel processing 
with s servers, and the average service 
(processing) rate of µ units per server.  
 Since CCR is a bottleneck, we assume 
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that the arrival rate (𝜆) is greater than or equal 
to the total processing rate in this parallel 
system (𝑠𝜇), or the utilization factor is at least 1 
( 𝜌 ≥ 1 ). If λ is less than 𝑠𝜇  ( 𝜌 < 1 ), the 
capacity of the resource is greater than the 
incoming demand, in which case the resource is 
not a CCR (bottleneck) resource. Any idleness 
in the multi-server CCR would have an adverse 

effect on the entire process efficiency. To 
prevent such situations, the CCR is protected by 
a time buffer. We denote the capacity size of 
this CCR as 𝐾, which combines the size of the 
waiting line in front of the CCR, i.e., the time 
buffer, and the number of servers, 𝑠.  

The model notations applied in this 
paper are summarized in Table 1.  

 
TABLE 1. NOTATIONS. 

 
Notations Explanations 

α Accepted idle rate of the CCR 
𝜆 Arrival rate 
𝜇 Processing (service) rate at each server 

𝛾 Occupancy rate per server, 𝜆 𝜇 

𝜌 Utilization factor, +
,-

 

𝑝/ Probability that the entire CCR system is idle 
𝑝0 Probability that k items are in the system (including the servers) 
𝐿2 Average size of the queue 
𝛼 Accepted idle rate 
α Threshold of the accepted idle rate 
𝐶67 Throughput per unit of sale 
𝐶89 Carrying cost per unit 

TUC Throughput per unit of cost, :;<
:=>

 

K Capacity size, combines the CCR’s time buffer (waiting line) size 
and units processed in servers (s) 

𝐾∗ Optimal capacity size 
s Number of servers 
NP Net profit 
NP* Maximum (optimal) net profit 
TH Throughput 
OE Operating expenses 

 

In an M/M/s/K system (Gross et al. 
2008), the probability 𝑝@ that the servers will be 
idle is: 

 

𝑝@ = 	
𝛾B

𝑛!

,

BE@

+
𝛾,

𝑠!
∙
1 − 𝜌IJ,KL

1 − 𝜌

JL

	 > 1 															(1)	
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According to (1), this probability is a 

function of the number of units in the system 𝐾 
and number of servers (s). To protect the CCR 
from being idle, we need 𝑝@ not to exceed a pre-
defined “accepted idle rate” α that, evidently, 
needs to be very small: 

 
																														𝑝@ 𝐾 ≤ 𝛼	.																																										(2) 

 
Solving inequality (2) for K, we can 

obtain the following expression:  

𝐾 ≥ 𝑠 − 1 +
SB TUV VUWX YWZ

WZ
S B [

			 𝜌 ≠ 1 ,																			 3
            
where 

𝐷 = 	
𝛾B

𝑛!

,JL

BE@

	 

𝐵 = 	
𝛾,

𝑠!
	. 

 
The imposed accepted idle rate actually 

serves as a constraint of the capacity size K. 
Using that, we formulate the following model 
for identifying the optimal capacity size:  

 
	𝑚𝑎𝑥
I

			𝑁𝑃 = 𝑠𝜇 1 − 𝑝@ 𝐶67 − [𝐿2 + 𝛾(1 − 𝑝0)]𝐶89 						(4) 

 
subject to 
 
									𝐾 ≥ max 𝑠 + 1, 𝐾 ,																																															(5) 
 
where  

                     

𝐾 = 𝑠 − 1 +
ln 𝜌 − 1 1 − 𝛼𝐷 + 𝛼𝐵

𝛼𝐵
ln 𝜌

													(6) 

 
		

							𝑝@ =
𝛾B

𝑛!

,

BE@

	+
𝛾,

𝑠!
∙
1 − 𝜌IJ,KL

1 − 𝜌

JL

																			 7  

 
								𝐿2 =

𝑝@𝛾,𝜌
𝑠! 1 − 𝜌 q 1 − 𝜌IJ,KL

− 1 − 𝜌 𝐾 − 𝑠
+ 1 𝜌IJ, 																																								 8  

                          

									𝑝0 =
𝛾I

𝑠! 𝑠IJ,
∙ 𝑝@.																																																			(9) 

 
We now explain the proposed 

optimization model. The model’s objective in 
(4) is based on the maximization of the net 
profit associated with the CCR system with 
parallel processes.   According to TOC (E. M. 
Goldratt 2010), a net profit (NP) can be 
identified as a difference between the 
throughput and operating expenses of the 
system’s CCR. Throughput (TH) is defined as a 
difference between the overall return generated 
through sales and material costs of goods sold, 
i.e.:  

 
											𝑇𝐻 = 𝑠𝜇 1 − 𝑝@ 𝐶67	,																																						(10) 
 
where 𝐶67 is the throughput per unit of sale. 

Operating expenses (OE) represent the 
cost of carrying a unit of stock associated with 
the time buffer. They are calculated as the 
average number of units in the system [𝐿2 +
𝛾	(1 − 𝑝0)]  times the per-unit carrying cost 
(𝐶89), i.e.: 
															 
										𝑂𝐸 = 𝐿2 + 𝛾 1 − 𝑝0 𝐶89	.																												(11) 

 
The difference between TH and OE 

defines the objective function NP in (4). 
Inequality (5) describes a constraint for the 
lower bound of the capacity size. It cannot be 
smaller than (s+1), the number of servers plus 
one unit in front of the CCR.  In addition, the 
capacity size is also constrained by the accepted 
idle rate: 𝐾 ≥ 𝐾, where 𝐾	in (6) is derived from 
inequality (3). The rest of the parameters in (4) 
— 	𝑝@ , 𝐿2 , and 𝑝0  — are defined by the 
respective (7)-(9) of an M/M/s/K queue (see, for 
example, Gross et al. 2008).  

To be able to identify the optimal 
capacity size 𝐾∗, we need to make sure that an 
optimal solution for this model does exist. The 
latter can be proven by demonstrating that the 
function 𝑁𝑃(𝐾)  from (4), where K is not 
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constrained, has a unique optimal solution of 
Capacity Size K. See proof in Appendix A.  

Given (5) and  (6), the optimal capacity 
size is affected by the pre-defined value of 
accepted idle rate (α). The smaller the α value, 
the lower the probability 𝑝@ 𝐾  of the servers 
to be idle, which implies the larger capacity 
size. This leads to a larger throughput, but, at 
the same time, increases the operating cost of 
carrying inventory stock in front of the multi-
server CCR due to the larger buffer size. The 
following statement establishes an estimate of 
how the value of α affects the optimal capacity 
size and associated net profit: 

 
There exists a threshold of 𝛼 , 𝛼 =

[JL
([yJL)	zK([JL)	{

, such that 
 
• When 𝛼 < 	𝛼, the optimal capacity 

size decreases as 𝛼 goes up, and the 
optimal net profit grows as 𝛼 
increases; 

• When 𝛼 ≥ 	𝛼, the optimal capacity 
size and net profit are not affected 
by 𝛼. 

 
The statements’ prove is presented in 

Appendix B.  It provides a very important 
meaning in terms of establishing an analytical 
lower bound for the α value, above which the 
optimal capacity size and net profit become 
insensitive to variations of α. This will be 
discussed in more details in the next section.   

Despite our ability to develop the 
optimal capacity size model, prove the 
existence of its optimal solution, and establish 
the α value threshold, an analytical solution for 
the optimal capacity size 𝐾  is hard to derive 
from the model in (4)-(5). Therefore, we 
developed and presented in Section 4 an in-
depth numeric analysis of the optimal capacity 
size and associated net profit, and their 
sensitivity to variations of the model 
parameters. 

 

IV.    NUMERIC ANALYSIS AND  
         SENSITIVITY OF OPTIMAL  
         CAPACITY SIZE AND NET PROFIT 
 

In this section, we first describe the 
algorithm used to identify numeric values of the 
optimal capacity size and associated net profit. 
Based on this algorithm, we calculate the 
optimal values and then numerically analyse 
them by varying the model parameters, i.e. 
accepted idle rate ( 𝛼 ), arrival rate ( 𝜆 ), 
processing rate (𝜇), and throughput per unit cost 
(𝐶67 𝐶89). The optimal capacity size model is 
formulated in Matlab (version R2013a). We 
assign values for the parameters and 
exhaustively search for the optimal capacity 
size K*, which generates the optimal (highest) 
net profit 𝑁𝑃*.  

 
4.1. Impact of Accepted Idle Rate  
 

The parameter α  represents the 
accepted probability rate that the CCR with 
parallel processes may be empty. As described 
in the previous section, α would affect K and 
then the lower bound of K ( 𝐿𝐵I ) , 𝐿𝐵I =
𝑚𝑎𝑥	{𝑠 + 1, 𝐾} (see inequalities (3) and (5)). 

To show changes of the optimal net 
profit ( 𝑁𝑃∗)  with respect to the optimal 
capacity size (𝐾∗ ), the values of other 
parameters have been fixed at: 𝜆 = 250, 𝜇 =
60, 𝐶67 = 26.4, 𝐶89 = 2 2, and s = 4. We 
choose two values of 𝛼: 10%, a relatively large 
chance of a CCR being empty, and 0.5%, a 
relatively small one. The changes of 𝑁𝑃∗ with 
respect to 𝐾∗ are shown in Fig. 1. At a larger α 
value, a lower K* is observed (K* = 8 when 𝛼 =
10%). However, when 𝛼 = 0.5% , the lower 
acceptance rate of p0 results in a higher bound 
of K* = 14. This prevents 𝑁𝑃  to reach the 
highest value since 𝐾 needs to be at least equal 
or larger than 14.  

Fig. 2 shows how both 𝑁𝑃∗  and 𝐾∗ 
change with 𝛼 . Their graphs clearly 
demonstrate that after a certain value of 𝛼 , 
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which is a threshold value, the optimal 𝑁𝑃∗and 
𝐾∗ results are not affected by 𝛼. This provides 

an additional confirmation of the threshold for 
α that is defined and proven in Section 3.  

 

 

FIGURE 1. IMPACT OF CAPACITY SIZE ON NET PROFIT.  

 

 

FIGURE 2. IMPACT OF ACCEPTED IDLE RATE ON OPTIMAL CAPACITY 
AND NET PROFIT.  

 
The value of α below the threshold does 

affect the optimal values of capacity size and 
net profit (see Fig. 2). The larger the value of α 

(from 0 to threshold), the lower will be the 𝐾∗ 
value, and the higher the 𝑁𝑃∗ value.  
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Overall, based on our sensitivity 
analysis and described threshold for α, we can 
derive several important observations:  

 
• When the accepted idle rate (α) is set 

smaller to reduce a chance that the 
CCR becomes idle, the optimal 
capacity size needs to be set larger 
to hold more inventory in front of 
the CCR. However, this will lead to 
a lower optimal net profit as more is 
spent on the inventory carrying cost.  

• The existence of the threshold for α 
means that, if α is larger than the 
threshold, its variations won’t affect 
the optimal capacity size and net 
profit, with the latter reaching its 
highest value. Therefore, from the 
practical viewpoint of managing a 
CCR with parallel processes, it is 
always better to apply a greater than 
the threshold value of the accepted 
idle rate.  

 
In the following sections we consider 

the case when α is large enough to exceed the 
respective threshold, and thus does not affect 
the sensitivity analysis of the optimal capacity 
size and associated net profit based on other 
model parameters.  

 
4.2. Impact of Arrival Rate  
 

In this section, we analyse the impact of 
changing arrival rate on the optimal capacity 
size and net profit. The following parameters 
are kept fixed: 𝜇 = 60, 𝛼 = 10%, 𝐶67 =
26.4, and	𝐶89 = 22 . The value of 𝜆  varies 
from 150 to 450 with an increment of 25. Then, 
we derive the optimal size of K and NP for each 
s (number of servers) varying from 3 to 5. 
Notice that 𝜆 also serves as the upper bound of 
s, since 𝜌 = +

-	,
> 1 . Therefore at different 

values of λ, the range of feasible s may vary. For 

example, when 𝜆 = 450, the upper bound of s 
is 7. The variations of optimal capacity size 
depending on λ and for various s are presented 
in Fig. 3.      

As can be observed from Fig. 3, if 𝜆 
increases, the optimal capacity declines first (in 
most cases), and then stays practically 
unchanged. Take s=3 in Fig. 3 for example, the 
capacity firstly decreases with 𝜆 ; once 𝜆 
exceeds 350, the optimal capacity becomes 
constant at 𝑠 + 1 = 4. It is not suppressing that 
that when 𝜆 is smaller, the operation manager 
tends to keep a larger buffer size (hence larger 
capacity) to prevent the system from being idle. 
Notice, the buffer size is not the actual queue in 
front. However, when 𝜆 becomes larger than a 
threshold, the systems are completely busy then 
there is no incentive to keep a larger buffer size 
as the operating expense is associated with the 
capacity K.  

Overall, based on the graphs in Fig. 3, 
we can conclude that there exists a threshold of 
λ, such that:   

 
• When 𝜆  is smaller then this 

threshold, the optimal capacity 
decreases with 𝜆; 

• When 𝜆  is greater or equal to the 
threshold, the optimal capacity is 
always 𝐾∗ = 𝑠 + 1.    

 
Then we analyse NP* variations for 

different values of 𝜆 (see Fig. 4). It is easy to 
see that as 𝜆 increases, given the same number 
of servers, the net profit would change 
insignificantly. For example, for s=4 and	𝜆 =
250, the optimal	𝑁𝑃∗ = $6158.24; for s=4 and 
𝜆 = 450, the optimal 𝑁𝑃∗ = $6230.70, which 
shows that a major increase in 𝜆 leads to a very 
small change (increase in our case) in optimal 
NP.        
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FIGURE 3. IMPACT OF ARRIVAL RATE ON OPTIMAL CAPACITY. 
 
 

 
FIGURE 4. IMPACT OF ARRIVAL RATE ON OPTIMAL NET PROFIT.  

The sensitivity analysis of the optimal 
solutions to variations of arrival rate can yield 
several important observations. When λ 

exceeds a respective threshold, it is the number 
of servers and associated processing rate that 
affect the optimal net profit. In this case, the 
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optimal buffer size is always 1 as K needs to be 
at least (𝑠 + 1). When λ is relatively small and 
below the respective threshold, a larger buffer 
size should be maintained to guarantee that the 
CCR servers are fully utilized, and thus the net 
profit could be maximized. It is also interesting 
to see from Fig. 4 that the net profit is much 
more affected by the number of servers than it 
depends on the arrival rate. A major increase in 
𝜆 leads to a very small change (increase in our 
case) in optimal NP.  There are two reasons 
behind: first, in this CCR system, we assume 
that arrival rate ( 𝜆 ) is greater than the 
processing capacity (𝑠 ∗ 𝜇) otherwise it is not a 
bottleneck. Second, the idle rate of the CCR 
system is controlled to be quite small. And it is 
cost-efficient to adjust the capacity (or buffer 
size) to make sure all the servers are fully 
utilized. Hence the impact of arrival rate on Net 
Profit is relative minor. 
4.3. Impact of Processing Rate 
 

In this section, we consider the 

sensitivity of the optimal capacity size and net 
profit to variations of the processing (service) 
rate µ. Values of the fixed parameters are:	𝜆 =
250, 𝛼 = 10%, 𝐶67 = 26.4, and	𝐶89 = 22 . 
The value of 𝜇 is changed from 30 to 110 with 
an increment of 10. We derive 𝐾∗ and 𝑁𝑃∗ for 
each value of s varying from 2 to 6 (see Fig. 5 
and Fig. 6). 

The charts in Fig. 5 clearly demonstrate 
that at each value of s, as 𝜇  increases, the 
optimal capacity would first stay unchanged 
and then increase (in most cases). Like in the 
previous case of sensitivity to variations of λ, 
we also observe here a threshold for 𝜇 , such 
that:  

 
• When µ  is smaller than the 

threshold, the optimal capacity size 
is always K = s + 1; 

• When µ is greater than or equal to 
the threshold, the optimal capacity 
size increases with µ. 

                      

 FIGURE 5. IMPACT OF PROCESSING RATE ON OPTIMAL CAPACITY.  
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FIGURE 6. IMPACT OF PROCESSING RATE ON OPTIMAL NET PROFIT. 
 

Then we analyse the sensitivity of the 
optimal NP* to different values of 𝜇. As can be 
seen from the charts in Fig. 6, the optimized net 
profit goes up with the increase of the 
processing rate. If the value of µ is fixed, then 
the optimal NP* would go up as the number of 
servers increase.  

Overall, based on the sensitivity of the 
optimal results to the processing rate µ, we can 
provide several important observations. First, 
when the processing rate is below a respective 
threshold, the optimal buffer size is always 1, 
i.e., 𝐾 = 𝑠 + 1,	and, thus, there is no incentive 
to hold more buffer units, as the supply of units 
in the CCR’s time buffer is always sufficient. 
Second, when the processing rate is increasing 
above the respective threshold, the CCR system 
should maintain a larger capacity size to 
guarantee that the servers are fully utilized and, 
as a result of such utilization, the optimal net 
profit will also go up. Finally, both 𝑠  and 𝜇 

would significantly impact the optimal net 
profit.  

 
4.4. Impact of Throughput per Unit Cost  
 

We define the ratio of throughput per 
unit (CTH) to carrying cost per unit 
(COE),	𝐶67 𝐶89, as the throughput per unit cost 
(TUC). A larger TUC ratio represents a higher 
per-unit rate of return for each item processed 
in the CCR system.   

For the sensitivity analysis of the 
optimal capacity size and net profit to variations 
of TUC, we fix values of the following 
parameters at: 𝜆 = 250, 𝜇 = 60, 𝛼 =
10%, and	𝐶89 = 22. The value of 𝐶67  varies 
from $25 to $175 with an increment of $25, 
which produces a variation of TUC from a 
relatively low ratio of 1.14 to a relatively high 
ratio of 7.95. Then, we derive K* and NP* for a 
feasible value of s varying from 2 to 4 (see Fig. 
7 and Fig. 8).   



Lan Wang, Zinovy Radovilsky 
Analysis of Capacity Constrained Resource with Parallel Processes 

 
Journal of Supply Chain and Operations Management, Volume 14, Number 1, February 2016 

 
62 

      

FIGURE 7. IMPACT OF TUC ON OPTIMAL CAPACITY. 

 

 

FIGURE 8. IMPACT OF TUC ON OPTIMAL NET PROFIT.

As can be seen from Fig. 7, when TUC 
increases with a fixed value of s, the optimal 
capacity size also goes up. For example, if 𝑠 =
4, 𝐾∗ increases from 7 to 17. In addition, the 

optimal capacity would go up as the value of 
TUC increases with more servers (s).   

The graphs in Fig. 8 yield several 
important observations:   
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• When the per-unit throughput is 

relatively large comparing to the 
per-unit carrying cost (TUC is 
higher), it is more profitable to 
design a CCR with more servers; 
and corresponding optimal capacity 
size increases with TUC. The rate of 
increase in profit with respect to 
TUC is higher at a higher number of 
servers.     

• The increase of TUC, given the 
same number of servers, would 
significantly affect the optimal NP 
growth. This is obvious since NP is 
linear in C�� , assuming that all 
other parameters are fixed.  

 
 
V.    CONCLUSION  
 

This paper provides analysis and 
insights into the time buffer size in a capacity 
constrained resource (CCR) with parallel 
processing. An appropriate size of the time 
buffer, which is, in combination with the 
number of servers, denotes the CCR’s capacity 
size, would protect the CCR with certain 
probability from becoming idle. We formulate 
the optimal capacity size model as a constrained 
optimization problem in the setting of a CCR 
being a finite multi-sever queue. The objective 
of this model is to maximize the CCR’s net 
profit in the context of the TOC. The major 
contributions and managerial insights 
stemming from this research are as follows. 

First, we prove that the unconstrained 
optimization model has a unique optimal 
solution for capacity size. When the model is 
constrained, the optimal capacity is affected by 
the CCR’s accepted idle rate. However, there 
exists a threshold for this accepted idle rate. 
When it is larger than the threshold, it would not 
affect the optimal capacity size, and, in this 
case, a higher optimal net profit can be achieved 
as compared to the case with a smaller than the 

threshold accepted idle rate. This finding 
suggests that a CCR system, in order to increase 
its net profit, may need to relax the accepted 
idle rate constraint.  

Next, we provide an extensive analysis 
of the optimal capacity size and associated net 
profit sensitivity to variations of the model 
parameters.  

Based on the numeric analysis of arrival 
rate, we observe a threshold for this parameter, 
with the values of arrival rate above the 
threshold leading to the optimal capacity size 
equal to the number of servers plus 1.  Contrary 
to that, with the arrival rate being relatively 
small and below the threshold, the CCR is 
required to maintain a larger optimal capacity 
size to guarantee that the servers are fully 
utilized.  

The results of numerical analysis of 
processing (service) rate reveal that there is also 
a threshold for this parameter. If the processing 
rate is below the threshold, the optimal buffer 
size is always 1, and the optimal capacity size 
is equal to the number of servers plus 1. This is 
due to the fact that the processing rate becomes 
lower than the arrival rate, and, therefore, there 
is no need to hold more buffer units in front of 
the CCR. When the processing rate is 
increasing above the threshold, the CCR is 
required to maintain a larger optimal capacity 
size to guarantee that the CCR servers are fully 
utilized.  

Comparing the impact of arrival rate 
and processing rate, we find that the processing 
rate (𝜇) and processing capacity (𝑠 ∗ 𝜇) have a 
much more significant impact on the net profit. 
It is because we control on the idle rate of the 
CCR system to be quite small. At the same time 
it is relatively cost-efficient to adjust the 
capacity (or buffer size) to make sure all the 
servers are fully utilized. Hence the impact of 
arrival rate on Net Profit is relative minor 
comparing with processing rate.  

Finally, the sensitivity analysis to 
variations of the throughput per unit cost (TUC) 
shows that, when the TUC is relatively large, it 
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is more profitable to design a CCR with more 
servers. In this case, the corresponding optimal 
capacity size increases with TUC growth, and 
the rate of increase in the optimal net profit with 
respect to TUC is higher with the larger number 
of servers.  

The future research of the optimal time 
buffer (capacity) size in the CCR with parallel 
processes may cover several possible 
directions. For example, we may consider a 
multi-product CCR system, where the arrival 
rates dynamically change due to various 
product types and their arrival patterns. In 
addition, the processing (service) rate can 
potentially dynamically change due to the 
different processing requirement in a multi-
product system. All this may necessitate an 
analysis of the optimal capacity size and net 
profit in a queuing system with a general arrival 
and service patterns.   
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Appendix A 
Proof of Unique Optimal Solution Existing in Objective Function  
 

Given the objective function in equation (4) (without the constraint):  
 

𝑁𝑃 𝐾 = 𝑠	𝜇	𝐶67 − 	𝑠	𝜇	𝐶67	𝑝@ 𝐾 − 𝐶89𝐿,(𝐾) 
= 	𝑠	𝜇	𝐶67 − 𝑠	𝜇	𝐶67𝑝@ 𝐾 − 𝐶89𝐿2 𝐾 + 𝐶89𝛾𝑝0 𝐾 − 𝐶89𝛾, 

where 
𝑝0 = 𝑝@

��

,!
𝜌IJ,, 

𝐿2 = 	
𝑝@𝛾,𝜌

𝑠! 1 − 𝜌 q 1 − 𝜌IJ,KL − 1 − 𝜌 𝐾 − 𝑠 + 1 𝜌IJ,

=
𝑝@𝛾,𝜌

𝑠! 1 − 𝜌 q −
𝜌q

1 − 𝜌 q 𝑝0 +
𝜌

𝜌 − 1 𝐾 − 𝑠 + 1 𝑝0. 

 
In the equation for NP(K), parameters 𝑝@ 𝐾 , 𝐿2 𝐾 , and 𝑝0 𝐾 are dependent of K. Let us 

define 𝑍 𝐾 = 	𝑠	𝜇	𝐶67𝑝@(𝐾) + 𝐶89𝐿2(𝐾) − 𝐶89𝛾𝑝0(𝐾), where members have an opposite sign 
to those in the equation for NP(K). As long as 𝑍 𝐾  is convex in K then it’s direct that 𝑁𝑃 𝐾  is 
concave.  

𝑍 𝐾  could be rewritten as follows (note 𝜌 = �
,
): 

 

𝑍 𝐾 = 𝑠	𝜇	𝐶67𝑝@ + 𝐶89
𝑝@𝛾,𝜌

𝑠! 1 − 𝜌 q −
𝜌q

1 − 𝜌 q 𝑝@
𝛾,

𝑠! 𝜌
IJ, +

𝜌
𝜌 − 1 𝐾 − 𝑠 + 1 𝑝@

𝛾,

𝑠! 𝜌
IJ,

− 𝐶89𝜌𝑠𝑝@
𝛾,

𝑠! 𝜌
IJ, 

= 𝑝@ 𝑠	𝜇	𝐶67 +
𝛾,𝜌

𝑠! 1 − 𝜌 q 𝐶89 + 𝐶89𝑝@
𝛾,

𝑠! ∙ 𝜌
IJ, 𝜌

𝜌 − 1 𝐾 − 𝑠 + 1 −
𝜌q

1 − 𝜌 q − 𝜌𝑠 . 

 
Then we define 𝐺 𝐾 = 𝜌IJ,( [

[JL
𝐾 − 𝑠 + 1 − [y

LJ[ y − 𝜌𝑠) .  If we can prove that 
𝑝@ 𝐾  and 𝐺 𝐾  are both convex, then 𝑍 𝐾  is convex.   

Since 𝑝@(𝐾) = 	
��

B!
,JL
BE@ + ��

,!
	LJ[

�U�YV

LJ[

JL
			 𝜌 > 1 . It has the same convexity with 

Λ 𝐾 = 𝜌IJ,KL. And given that Λ 𝐾 = 𝜌IJ,KL is convex in 𝐾 when ρ > 1, therefore, 𝑝@ 𝐾  is 
convex in K. 

Then to prove the convexity of 𝐺(𝐾), we derive the second order condition as follows:  
𝑑q𝐺
𝑑𝐾q =

𝜌IJ,KL log 𝜌
(𝜌 − 1)q 2 𝜌 − 1 +	 log 𝜌 (2	(	𝜌 − 1) 	+ (−1 + 𝐾	 𝜌 − 1 + 𝑠	 	𝜌 − 2 	𝜌 − 1

+ 2𝜌) .	
As long as �

y�
�Iy

≥ 0 , then 𝐺(𝐾)  must be convex. And the corresponding condition is 
2 𝜌 − 1 +	 log 𝜌 ∙ (2	(𝜌 − 1) 	+ (−1 + 𝐾	 𝜌 − 1 + 𝑠	 	𝜌 − 2 	𝜌 − 1 + 2𝜌) ≥ 0.  

In sum, 𝑁𝑃(𝐾) is concave in 𝐾  when 2 𝜌 − 1 +	 log 𝜌 ∙ (2	(𝜌 − 1) 	+ (−1 + 𝐾	 𝜌 −
1 + 𝑠	 	𝜌 − 2 	𝜌 − 1 + 2𝜌) ≥ 0. Further, there must exist unique optimal solution of K. Note 
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that in the all of the numerical analysis in this paper, the parameter-settings guarantee the concavity 
of (𝐾) .  
 
 
Appendix B 
Proof of Threshold for Accepted Idle Rate 
 

From constraint (5), 	𝐾 ≥ (𝑠 + 1) . In addition, given the constraint (3) on the idle 

probability, 𝐾 ≥ 𝑠 − 1 +
SB TUV VUWX YWZ

WZ
S B [

. Then we denote (𝑠 − 1 +
SB TUV VUWX YWZ

WZ
S B [

) as 𝐾, and 
thus 𝐿𝐵I = max	{𝑠 + 1, 𝐾}, where 𝐿𝐵I is the lower bound of K.  

The value of 𝛼 affects the optimal capacity size when 𝐾 is larger than 𝑠 + 1, and hence, 

𝐿𝐵I = 𝐾 . 𝐾 − 𝑠 + 1 > 0 when 𝑠 − 1 +
�� TUV VUWX YWZ

WZ
��[

− 𝑠 + 1 =
�� TUV VUWX YWZ

WZ
��[

− 2 >0. 

Therefore, 𝛼 = [JL
([yJL)	zK([JL)	{

.  
In summary, we have the following: 
 
• If α < α, then K > s + 1  and 𝐿𝐵I = 𝐾. The lower bound of K is larger than (𝑠 + 1).  
• If α ≥ α, then K ≤ s + 1  and 𝐿𝐵I = 𝑠 + 1. The lower bound of K is (𝑠 + 1).  

 
 
 


