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In this paper, we develop models and solution methodologies for the service system design 
problem. Service system design problems aim to determine the optimal number, location, and 
capacity level of service facilities as well as the assignment of consumers to facilities to optimize 
some service objectives. In this paper, we consider the problem of designing service systems to 
find a socially optimal solution by minimizing the overall cost to consumers and service providers 
with applications in healthcare and public sector. We consider settings where consumers and 
facilities are part of a congested network in which the consumer demand and service times are 
stochastic, and the capacity cost is a concave function of capacity levels. Furthermore, we only 
consider assignments in which consumers choose which facility to patronize. The problem of 
designing a service system in our setting can be modeled by a non-linear mixed-integer 
programming problem, for which an exact solution within a reasonable time is not readily 
available. We use Generalized Benders Decomposition, and a special-purpose Search and Cut 
method to develop two efficient solution methodologies. Through a realistic case study of 
designing a service system in the city of Toronto, we provide further insight into the effect of 
various model parameters on the efficiency of the proposed solution methodologies. 
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I. INTRODUCTION AND RELATED 
WORK 

In many applications, service time 
provided by service facilities is the primary 
factor in determining the service quality, and 
excessive waiting time negatively impacts 
the consumer experience. On the one hand, 

lower waiting times may necessitate the 
allocation of many decentralized facilities 
that are easily accessible, as measured by 
proximity to the majority of the consumers. 
On the other hand, few centralized facilities 
may be necessary to reduce service cost. 
Service System Design problems are often 
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formulated to strike a balance between the 
consumer service time and the service cost 
with applications in many areas such as 
healthcare and public sector. Service system 
design problems fall into a more general 
category of Stochastic Location Models with 
Congestion (SLMC), in which demand is 
stochastically generated by the consumers 
and service times are stochastic as well. The 
nature of this stochastic behavior often 
implies that the demand may not be served 
immediately. The partial fulfillment of the 
consumer demand results in either waiting or, 
ultimately, demand loss. SLMCs capture the 
trade-off between consumer waiting time and 
service cost by finding an optimal assignment 
of consumers and allocation of service 
capacities to the open facilities. Servers in a 
SLMCs can be considered mobile or 
immobile. When servers are mobile, the 
service provider travels to provide service to 
consumers. When the servers are immobile, 
consumers travel to facilities to access the 
service. 

In this paper, we consider the problem 
of designing a service system in a network of 
facilities with immobile servers. For a recent 
literature review that includes a detailed 
summary of location analysis with immobile 
servers and congestion, see Berman, Krass, 
and Wang (2011), Berman and Krass (2020), 
and the references therein. Our model 
assumptions fit in a variety of applications, 
ranging from locating private facilities such 
as retail stores, repair shops, or service 
centers to locating public facilities such as 
government offices, hospitals, and medical 
clinics, where the consumers choose which 
facility to patronize, and capacity in these 
facilities can be an aggregation of a variety of 
service resources available at the facilities. 
Another important application example is the 
location of preventive health care facilities 
such as clinics with mammograms, 
vaccination sites, and blood test centers. For 
more applications of service system design 

problems in healthcare services, we refer the 
reader to the works of Aboolian, Berman, and 
Verter (2016); Zhang et al. (2010); Vidyarthi 
and Kuzgunkaya (2015); and Dogan, 
Karatas, and Yakici (2020). 

The service system design problems 
can be classified using the following three 
characteristics: (1) whether the consumers 
choose the facility, or it is dictated to them by 
the provider; (2) whether the objective is to 
minimize consumer access cost or service 
provider’s operating cost (or both); and (3) 
whether the cost of acquiring service capacity 
is linear or concave in capacity level. 
Marianov and Serra (1998) and Marianov 
and Rı ́os (2000) were first to consider 
congestion in service system design 
problems. They used the covering location 
model with a constraint that would not allow 
the waiting time or the queue length to exceed 
an acceptable level. These two papers, along 
with Wang, Batta, and Rump (2002); Berman 
and Drezner (2007); and Aboolian, Berman, 
and Drezner (2009) focus on minimizing 
service access cost to consumers assuming a 
limited-service capacity requirement. Wang, 
Batta, and Rump (2002) also consider the 
case in which the objective is to minimize the 
service provider’s cost, assuming they 
provide a certain level of service quality. 
There are other papers in which the system is 
designed with the provider benefits in mind. 
One example of such problems is Aboolian, 
Berman, and Krass (2012), which introduces 
a profit-maximizing service system design 
problem with demand elasticity with respect 
to travel and waiting time. Other similar 
papers with demand elasticity are Zhang, 
Berman, and Verter (2009) and Aboolian, 
Berman, and Verter (2016), where the 
objective is to maximize consumer 
participation. 

Designing socially optimal service 
systems has been the focus of the attention of 
many researchers for the past two decades. In 
socially optimal service system designs, the 
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objective is to minimize the overall cost to 
consumers (cost incurred for traveling, 
waiting, and service time) and service 
provider’s operating costs (fixed facility and 
variable capacity costs). Amiri (1997); 
Aboolian, Berman, and Drezner (2008); 
Elhedhli (2006); Castillo, Ingolfsson, and 
Sim (2009); Vidyarthi and Jayaswal (2014), 
and Elhedhli, Wang, and Saif (2018) are 
examples in which a socially optimal service 
system design problem is considered. With 
the exception of Aboolian, Berman, and 
Drezner (2008), all papers in socially optimal 
models consider a consumer assignment by 
the service provider. In this paper, we 
consider service system design problems 
with consumer choice. To model consumer 
choice in stochastic location models, many 
papers such as Wang, Batta, and Rump 
(2002); Berman and Drezner (2007), and 
Aboolian, Berman, and Drezner (2008) 
consider settings in which consumers choose 
the closest facility to access their services. 
Similarly, we consider proximity to service 
facilities as the main proxy for consumer 
choice. 

Elhedhli (2006) and Aboolian, 
Berman, and Drezner (2008) are perhaps the 
closest works to this paper. Although 
Elhedhli (2006) considers a service system 
design problem in which the service capacity 
cost is a concave function of service capacity, 
it differs from this paper in that it assumes 
consumers are assigned to facilities by the 
service provider. On the other hand, although 
Aboolian, Berman, and Drezner (2008) 
consider a service system design problem 
with consumer choice, it differs from this 
paper since it assumes service capacity cost 
is a linear function of the service capacity and 
facilities are modeled as M/M/k queuing 
systems. In this paper, we consider the 
consumer choice problem, use a concave 
service capacity cost function, and model 
facilities as M/M/1 queuing systems. In terms 
of service capacity, we assume that the 

service system designer’s objective is to 
determine a service rate rather than 
determining the number of servers for a fixed 
service rate. In other words, we assume that 
each facility act as an M/M/1 queuing system 
rather than an M/M/k queuing system. There 
are two reasons for choosing the M/M/1 
model over the M/M/k. First, facilities could 
use several distinct capacities and servers, 
which may be hard to determine. For 
example, a medical clinic will often use 
nurses, doctors, operating rooms, X-ray 
machines, etc., all with different levels of 
capacity and a different number of servers. 
For such a system, it is more suitable to use 
an aggregate capacity service rate that 
represents the clinic’s different service 
resources. Second, when the system 
utilization is reasonably high, an M/M/1 
queue could be used as a good approximation 
for an M/M/k queue (Baron, Berman, and 
Krass, 2008). 

The problem is formulated as a 
Mixed-Integer Nonlinear Program (MINLP). 
We propose three solution methodologies. 
The first methodology is a heuristic, which 
uses a modified descent approach in 
neighborhood search for a known location 
set. The second solution methodology is 
another heuristic, which is based on a 
Generalized Benders 
Decomposition (Floudas, Aggarwal, and 
Ciric 1989; Geoffrion 1972) of the main 
problem into various Linear Programming 
(LP) subproblems and Mixed-Integer 
Programming (MIP) master problems. 
Finally, we use a special-purpose algorithm 
that utilizes a Search and Cut approach – an 
adaptation of the search and cut method 
introduced in Aboolian, Cui, and Shen 
(2013) to the service system design problem 
– for finding an optimal solution efficiently. 
To study the performance of the proposed 
methodologies, we perform extensive 
numerical testing on a realistic situation of 
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designing service systems for the city of 
Toronto, Canada. 

The contribution of this paper to the 
literature of service system design problems 
is two-fold. First, we model the service 
system design problem by considering 
consumer choice and a concave service 
capacity cost function where each facility is 
modeled as a M/M/1 queuing system, that 
when compared to a M/M/k queuing systems, 
can represent a broader range of service 
capacities, and as such can be applied to a 
broader set of problems. Second, we develop 
an efficient exact solution methodology. In 
particular, unlike other known solution 
methodologies developed for the service 
system design problem, the Search and Cut 
solution approach in this paper can solve 
many large-scale problems efficiently while 
not being sensitive to the number of capacity 
levels. 

The rest of this paper is organized as 
follows: Section 2 discusses the problem 
formulation. In Section 3, we present two 
heuristic methodologies based on a 
neighborhood search and a generalized 
Benders decomposition approach, and an 
exact solution approach based on a search 
and cut methodology. Numerical testing and 
computational results are discussed in 
Section 4. We provide conclusions and 
suggestions for future research in Section 5. 

 
II. PROBLEM FORMULATION 

 
Consider a set of consumers indexed 

by 𝑖 ∈ 𝑀 1,2,⋯ ,𝑚, in which consumer 
𝑖’s demand can be modeled as a Poisson 
process with a mean rate of 𝜆 . Moreover, 
consider the set of candidate facility locations 
indexed by 𝑗 ∈ 𝑁 1,2,⋯ ,𝑛, and the set of 
capacity levels indexed by 𝑘 ∈ 𝐾

1,2,⋯ , 𝜅, in which the mean service rate of a 
facility when allocated capacity level 𝑘 is 
denoted by 𝜇‾ . Without loss of generality, we 
assume that the vector 𝜇‾ ∈  is an 
increasing vector in 𝑘. Let 𝑦  be the binary 
variable that takes value 1 if consumer 𝑖’s 
demand is allocated to service facility 𝑗. 
Furthermore, let 𝑧  be the binary variable 
that takes value 1 if facility 𝑗 is allocated 
capacity level 𝑘. Also, let 𝑥  be the binary 
variable that takes value 1 if we plan to open 
a facility in location 𝑗 and 0 otherwise. We 
note that the problem can be formulated 
without the introduction of variables 𝑥 , as 
𝑥 ∑ 𝑧∈ . However, we use variables 𝑥  
to simplify the problem formulation. 
Consumer demands are assumed to be 
independent Poisson in which each consumer 
assigns the entirety of its demand to the 
closest service facility. Moreover, we assume 
that the service times are exponentially 
distributed. Hence, each service facility acts 
as an M/M/1 queue with a mean demand of 
𝛬 ∑ 𝜆∈ 𝑦 , and a mean service rate of 
𝜇 ∑ 𝜇‾∈ 𝑧 . The service access cost for 
a unit demand of consumer 𝑖 from facility 𝑗 is 
denoted by 𝑐 , which we assume to be a 
linear function of the travel distance of 
consumer 𝑖 to facility 𝑗 denoted by 𝑑 . So the 
closer the facility is to the consumers, the 
lower their access cost. Denote 𝛼 as the 
average waiting cost per unit of time and 𝑓  
to indicate the fixed cost of opening a facility 
at site 𝑗. Furthermore, the capacity cost of the 
facility 𝑗 is modeled via a concave function 

𝜔 𝜇 𝛽𝜇 , in which 0 𝜙 1 and 
𝛽 0. Given the above definitions, the 
Service System Design Problem (SSDP) can 
be formulated as the following cost 
minimization problem. 
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 min   𝑍SSDP 𝐱, 𝐲, 𝐳 𝑓
∈

𝑥 𝑐
∈∈

𝜆 𝑦

  𝜔
∈∈

𝜇‾ 𝑧 𝛼
∑ 𝜆∈ 𝑦

∑ 𝜇‾∈ 𝑧 ∑ 𝜆∈ 𝑦
∈

, 1.1

subject to:
 𝑦 𝑥  , ∀𝑖 ∈ 𝑀 ,∀𝑗 ∈ 𝑁 , 1.2

  𝑦
∈

1 , ∀𝑖 ∈ 𝑀 , 1.3

  𝑧
∈

𝑥  , ∀𝑗 ∈ 𝑁 , 1.4

  𝜆
∈

𝑦 𝜇‾
∈

𝑧  , ∀𝑗 ∈ 𝑁 , 1.5

  𝑐
∈

𝑦 𝑐 𝐿 𝑥 𝐿 , ∀𝑖 ∈ 𝑀 ∀𝑗 ∈ 𝑁 , 1.6

 𝑦 ∈ 0,1 , ∀𝑖 ∈ 𝑀 ,∀𝑗 ∈ 𝑁 , 1.7
 𝑧 ∈ 0,1 , ∀𝑗 ∈ 𝑁 ,∀𝑘 ∈ 𝐾 , 1.8
 𝑥 ∈ 0,1 , ∀𝑗 ∈ 𝑁 , 1.9

 

 
The objective function terms 

represent the acquisition costs, access cost, 
capacity cost, and the expected waiting cost, 
respectively. Constraints 1.2 allow the 
assignment of demand to open facilities only. 
Constraints 1.3 guarantee that each consumer 
is assigned to a single open facility. 
Constraints 1.4 guarantee that each open 
facility is assigned just one capacity level. 
Constraints 1.5 ensure that the demand 
arrival rate to a facility does not exceed its 
service capacity rate. Constraints 1.6 ensure 
that each consumer chooses (is assigned to) 
the closest facility, in which 𝐿 is a large 
enough number (e.g., 𝐿=max 𝑐  for 𝑖 ∈ 𝑀 

and 𝑗 ∈ 𝑁). Note that Constraints 1.6 achieve 
the closest assignment restriction because if a 
facility is opened at 𝑗 𝑥 1 , the 
assignment access cost of customers at node 
𝑖 ∈ 𝑀, given by ∑ 𝑐∈ 𝑦 , is at most 𝑐 . 

 

III. SOLUTION METHODOLOGIES 
 
SSDP is a MINLP for which finding 

an exact solution within a reasonable time is 
not easily available. In this section, we 
introduce a lower bound and several solution 
methodologies for SSDP. All of these 
solution methodologies are based on 
exploitation of SSDP’s special structure. In 
particular, we demonstrate that solving SSDP 
can be simplified to the problem of finding a 
set of open facilities that minimizes the 
system’s overall cost. To achieve this, we 
show that when a set of open facilities is 
determined, the optimal capacity allocations 
and the consumer assignments can be found 
efficiently. As such, we start this section by 
formalizing the idea of finding the optimal 
capacity allocation for a set of open facilities, 
and proceed to the introduction of a lower 
bound as well as approximate and exact 
solution methodologies for SSDP afterward. 
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3.1. Optimal Capacity Allocation for a Set 
of Open Facilities 

 
Given a set of open facilities in SSDP, 

since consumers are to be assigned to their 
closest facility, the problem simplifies to 
finding the optimal capacity at each of the 
open facilities. To show this, let 𝑆 ⊆ 𝑁 be a 
given set of open facilities in SSDP. Also, let 
𝐸 𝑆  denote the set of consumers closest to 

facility 𝑗 ∈ 𝑆, in which ⋃ 𝐸∈ 𝑆 𝑀, and 
𝐸 𝑆 ∩ 𝐸 𝑆 ∅, for 𝑗 𝑗 ∈ 𝑆. Note that 
if consumer 𝑖’s closest facility in set 𝑆 is not 
unique, we consider the smallest indexed 
facility. Additionally, let 𝛬 𝑆  be the 
demand rate at facility 𝑗 ∈ 𝑆, such that 
𝛬 𝑆 ∑ 𝜆∈ . Moreover, let 𝑘‾  be the 

smallest capacity level for each facility 
determined as follows.  

𝑘     arg min  ∈    𝑘 :  Λ 𝑆    �̅�    for  𝑗  ∈  𝑆.         2  
 
Consider μ 𝑆 ∈ μ : 𝑘 ∈ 𝑘 ,𝑘

1,⋯ , κ , a scalar denoting a feasible 
capacity rate assigned to the facility 𝑗 ∈ 𝑆. 

Then the objective function of SSDP can be 
rewritten as follows: 

min
∈

𝐹 𝑆, 𝜇 𝑆

≜ 𝑓
∈

𝑐
∈∈

𝜆 𝜔
∈

𝜇 𝑆 𝛼
𝛬 𝑆

𝜇 𝑆 𝛬 𝑆
∈

⋅         3  

 
Note that given 𝑆, since the first two 

terms of (3) are constant, the problem takes 
the following simpler objective: 

min
∈

𝐹‾ 𝑆, 𝜇 𝑆 ≜ 𝜔
∈

𝜇 𝑆 𝛼
𝛬 𝑆

𝜇 𝑆 𝛬 𝑆
∈

⋅        4  

 
The optimal solution of (4), denoted 

by 𝜇⋆ 𝑆 ≜ 𝜇⋆ 𝑆
∈

, can be found 

efficiently via complete enumeration of 𝜅 
available capacity levels at each of the open 
facilities, even for large values of 𝜅. This is 
because finding the capacity rate resulting in 

the least capacity and waiting time cost can 
be simplified to the problem of finding the 
minimum element of a vector, which has a 
polynomial complexity time. 

Next, we formalize the idea of finding 
an optimal solution, given a set of open 
facilities, in Algorithm 1. 
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ALGORITHM 1: OPTIMAL CAPACITY ALLOCATION FOR A GIVEN SET OF OPEN 
FACILITIES 

 
Given the above arguments, it 

becomes clear that the main decision in SSDP 
is simply to find the set of open facilities that 
minimizes the system’s overall cost. We refer 
to such set as optimal set of facility locations. 

 
3.2. A Lower Bound for SSDP 

 
Let 𝑍SSDP

∗  and 𝑆SSDP
∗  be the optimal 

value of the objective function and an optimal 
set of facility locations for SSDP, 

respectively. To obtain a lower bound on 
𝑍SSDP
∗ , we start by finding a lower bound on 

the sum of capacity and waiting time cost, 
𝐹‾ 𝑆, 𝜇 𝑆  as defined in (4). To do so, for a 
given number of open facilities, say 𝑙 ∈ 𝑁, 
we solve the following non-linear 
optimization problem which we call 
Minimum Capacity and Waiting Cost 
Problem (MCWCP). 

 

Input: 𝑆 
Output: 𝜇⋆ 𝑆 ,𝐹‾ 𝑆, 𝜇⋆ 𝑆 ,𝐹 𝑆, 𝜇⋆ 𝑆   

1. ∀𝑗 ∈ 𝑆 let 𝐸 𝑆 𝑖: 𝑗 argmin ∈ 𝑐  , 𝑖 ∈ 𝑀, and 𝛬 𝑆 ∑ 𝜆∈  

2. For 𝑗 ∈ 𝑆, 

I. Let 𝑘 𝑎𝑟𝑔 𝑚𝑖𝑛 ∈ 𝑘:Λ 𝑆 �̅�  

II. 𝑘⋆ arg𝑚 𝑖𝑛 ∈ , ,…, 𝑘:ω μ α  

III. Set 𝜇⋆ 𝑆 𝜇‾ ⋆ 

3. Set 𝜇⋆ 𝑆 𝜇⋆ 𝑆
∈

, 𝐹‾ 𝑆, 𝜇⋆ 𝑆 ∑ 𝜔∈ 𝜇⋆ 𝑆 𝛼 ∑ ⋆∈ , 

𝐹 𝑆, 𝜇⋆ 𝑆 ∑ 𝑓∈ ∑ ∑ 𝑐∈∈ 𝜆 𝐹‾ 𝑆, 𝜇⋆ 𝑆 . 
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 min   𝒞 𝐠,𝐦 𝜔 𝑚 𝛼
𝑔

𝑚 𝑔
,       5.1

subject to:
 𝑔 𝑚  ,∀𝜂 ∈ 1,2,⋯ , 𝑙 ,       5.2
 𝑚 𝜇‾  ,∀𝜂 ∈ 1,2,⋯ , 𝑙 ,       5.3

  𝑔 𝛬,       5.4

 𝑔 ,𝑚 0 ,∀𝜂 ∈ 1,2,⋯ , 𝑙 ,       5.5

 

 
in which 𝛬 ∑ 𝜆∈ , and 𝑙 ∈ 𝑁. Also 𝑚  
and 𝑔  are the decision variables 
corresponding to demand and capacity levels 
at facility 𝜂 ∈ 1,2, … , 𝑙 , respectively. We 
note that the continuous variables of 𝐠 and 𝐦, 
resemble the discrete parameters of 𝛌 and 𝛍, 
respectively. For a given 𝑙, let 𝒞⋆ ≜

𝒞⋆ 𝐠⋆,𝐦⋆ ∑ 𝜔 𝑚⋆ 𝛼 ∑
⋆

⋆ ⋆  

be the optimal value of MCWCP. Note that, 
since MCWCP finds an optimal capacity and 
demand allocation to the open facilities 
without restricting the allocations of specific 
consumer nodes to specific facilities or 
requiring a discrete set of capacity rates, its 

value is a lower bound on the sum of capacity 
and waiting time cost. 

For a given 𝑆, note that 𝛬 𝑆

∑ 𝜆∈  for 𝑗 ∈ 𝑆, 𝜇⋆ 𝑆 𝜇⋆ 𝑆
∈

, 

and 𝐹‾ 𝑆, 𝜇⋆ 𝑆  can be found using 
Algorithm 1. Let 𝑟  be the 𝛈th smallest 
facility index in 𝑆 such that 𝑟 ∈ 𝑆 for 𝜂 ∈
1,2, … , |𝑆|, in which |𝑆| is the cardinality of 

set 𝑆. Since 𝑚 ,𝑔 𝛬 𝑆 , 𝜇⋆ 𝑆 , 

for 𝜂 ∈ 1,2, … , |𝑆|, is a feasible solution of 
MCWCP, then for any 𝑆, 𝒞| |

⋆ 𝐹‾ 𝑆, 𝜇⋆ 𝑆 . 
Therefore, we conclude: 

𝒞
SSDP
∗

⋆ 𝐹‾ 𝑆SSDP
∗ ,𝜇⋆ 𝑆SSDP

∗ .       6  

 
We now define the following MIP 

which is a modified version of the 
Uncapacitated Facility Location Problem 
(MUFLP): 
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 min   𝑍MUFLP 𝐱, 𝐲, 𝐯 𝑓
∈

𝑥 𝑐
∈∈

𝜆 𝑦 𝒞⋆ 𝑣 ,       7.1

subject to:
 𝑦 𝑥  , ∀𝑖 ∈ 𝑀 ∀𝑗 ∈ 𝑁 ,       7.2

  𝑦
∈

1 , ∀𝑖 ∈ 𝑀 ,       7.3

  𝑐
∈

𝑦 𝑐 𝐿 𝑥 𝐿 , ∀𝑖 ∈ 𝑀 ,∀𝑗 ∈ 𝑁 ,       7.4

  𝑣 1 ,       7.5

  𝑥
∈

𝑙 𝑣  ,       7.6

 𝑦 𝑥  , ∀𝑖 ∈ 𝑀 ,∀𝑗 ∈ 𝑁 ,       7.7
 𝑦 ∈ 0, 1  , ∀𝑖 ∈ 𝑀 ,∀𝑗 ∈ 𝑁 ,       7.8
 𝑥 ∈ 0, 1  , ∀𝑗 ∈ 𝑁 ,       7.9
 𝑣 ∈ 0, 1  , ∀𝑙 ∈ 1,2,⋯ ,𝑛  ,       7.10

 

 
in which 𝑣  is a binary variable that is one if 
we open 𝑙 facilities and zero otherwise. 
Constraint 7.6 ensures that if ∑ 𝑥∈ 𝑙, 
then 𝑣 1. Constraints 7.4 ensure 
consumers are assigned to the closest facility. 
Also note that Constraint 7.5 and 
Constraint 7.6 do not restrict the feasible 
region for a general Uncapacitated Facility 
Location Problem (UFLP). They simply 
decide the value for the last term in the 
objective function of MUFLP. 

To see how the optimal solution of the 
MUFLP provides a lower bound for SSDP, 
consider the following result.  

Lemma 1. Let 𝑍MUFLP
⋆ , and 𝑆MUFLP

⋆  be 
the optimal value of the MUFLP and the set 
of open facilities corresponding to the 
optimal solution of MUFLP, respectively. 
Then 𝑍MUFLP

⋆ 𝑍SSDP
⋆ . 

A proof is included in Section 6.1 in 
the Appendix. 

 

3.3. An Approximate Approach and An 
Upper Bound for SSDP 

 
We note that when the unit costs for 

capacity and waiting time in SSDP equals 
zero (𝛼 𝛽 0), SSDP reduces to UFLP. 
Since UFLP is an NP-hard problem, SSDP is 
also an NP-hard problem. Thus, it is difficult 
to obtain good solutions for SSDP within a 
reasonable time. As such, developing a 
heuristic to find quality approximate 
solutions for SSDP becomes necessary. The 
heuristic presented here is based on the 
solution to MUFLP discussed in Section 3.2. 
Given Lemma 1, the optimal value of 
MUFLP is a lower bound to SSDP. We note 
that any feasible location set for MUFLP 
(including 𝑆MUFLP

⋆ ) is also a feasible solution 
for SSDP. This is true since in both problems 
the consumers are assigned to their closest 
facility. Therefore, the objective value of the 
SSDP for the optimal location set found in 
MUFLP provides an upper bound for SSDP 
such that 
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𝑍SSDP
⋆ 𝐹 𝑆MUFLP

⋆ , 𝜇⋆ 𝑆MUFLP
⋆ .       9  

 
We note that 𝐹 𝑆MUFLP

⋆ , 𝜇⋆ 𝑆MUFLP
⋆  

can be found using Algorithm 1. 
Here, we use a modified descent 

approach in neighborhood search for 𝑆MUFLP
⋆  

– the location set corresponding to the 
optimal solution of MUFLP – to find an 
approximate solution, and an improved upper 
bound, for SSDP. For each location set in the 
neighborhood we look for improvement in 
the objective value, which can be determined 
efficiently using Algorithm 1. 

A modified descent approach can be 
applied as follows. We first define the 
distance-2 neighborhood of a set 𝑆. For 
example, 𝑆  is in neighborhood of 𝑆 if the 
number of nonoverlapping elements in the 
two sets does not exceed 2. In particular, the 
distance-2 neighborhood of 𝑆 includes 𝑆  
with 

 one additional facility, 
 one facility removed from it (when 

|𝑆| > 1), 
 two additional facilities, 
 two facilities removed from it (when 

|𝑆| > 2), and 
 one facility added and another facility 

removed from it. 
Once the neighborhood is well 

defined, the modified descent approach is 
straightforward: Use a starting subset 𝑆; 
evaluate the change in the value of the 
objective function for all the subsets in the 
neighborhood, using Algorithm 1; if an 

improved subset exists in the neighborhood, 
we repeat the search for all the improved 
subsets in the neighborhood. The above steps 
are repeated using the new subsets until no 
improved subset exists in neighborhood 
searches. The set with the best objective is the 
approximate solution. We note that the 
descent algorithm and its modification can be 
expanded to arbitrary distance 
neighborhoods. See Aboolian, Cui, and Shen 
(2013) for an example. 

The modified descent approach 
introduced here is an adaptation of the 
descent approach introduced in Aboolian, 
Cui, and Shen (2013). Whereas the descent 
approach considers the best location set when 
repeating the neighborhood search, the 
modified descent approach considers all 
improved location sets. Thus, when 
compared to the descent approach, the 
modified version here generally searches a 
wider range of location sets. As we discuss in 
Section 4, the wider neighborhood search of 
the modified descent approach results in 
improved upper and lower bounds, fewer 
iterations of the search and cut methodology, 
and ultimately better efficiency. 

Algorithm 2 describes the modified 
descent approach to find the set of all 
improvements in the objective value, along 
with an approximate solution of SSDP given 
an initial set of open facilities. 
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ALGORITHM 2: MODIFIED DESCENT ALGORITHM FOR A GIVEN SET OF OPEN 
FACILITIES 

 
If we use 𝑆MUFLP

⋆  as the starting set of 
open facilities in Algorithm 2, we will obtain 
a feasible solution of SSDP, hence a new and 
improved upper bound on the optimal value 
of SSDP, such that 

𝑍SSDP
⋆

𝐹 𝑆 𝑆MUFLP
⋆ , 𝜇⋆ 𝑆 𝑆MUFLP

⋆ . 

in which, 𝑆 𝑆MUFLP
⋆  and 

𝐹 𝑆 𝑆MUFLP
⋆ , 𝜇⋆ 𝑆 𝑆MUFLP

⋆  are 

found using Algorithm 2. 

3.4. Search and Cut Approach for SSDP 
 
The exact approach presented here is 

based on successive improvements on upper 
bound and lower bounds of SSDP. We call 
this exact method Search and Cut, since the 
improvement on upper bound is based on 
increasing the “Search” area to include new 
neighborhoods, and the improvement on 
lower bound is achieved by solving the 
original MUFLP with added “Cuts” to 
exclude the area that has already been 
searched. In particular, we first find an initial 

Input: 𝑆 

Output: 𝒜 𝑆 , 𝑆 𝑆 ,𝐹 𝑆 , 𝜇⋆ 𝑆 ,𝒢 𝑆  

1. Find 𝐹 𝑆, 𝜇⋆ 𝑆  using Algorithm 1 and set 𝑏 𝐹 𝑆, 𝜇⋆ 𝑆 . Let 𝒜 𝑆 ≜ 𝒜 𝑆, 

𝒢 𝑆 ≜ 𝒢 𝑆, 𝑆 𝑆 ≜ 𝑆 𝑆, and 𝒮 𝑆 . 
2. Let 𝑆  be the first element of 𝒮 

I) Let ℬ be the set of all neighbors of 𝑆  with 

– one additional facility, 
– one facility removed from it (when |𝑆 | > 1), 
– two additional facilities, 
– two facilities removed from it (when |𝑆 | > 2), and 
– one facility added and another facility removed from it, 

  where |𝑆 | is the cardinality of 𝑆 . 
II) Set 𝒢 𝒢 ∪ ℬ: 

III) For 𝐵 ∈ ℬ: 

a) Find 𝐹 𝐵, 𝜇⋆ 𝐵  and 𝐹 𝑆 , 𝜇⋆ 𝑆  using Algorithm1. 

b) If 𝐹 𝐵, 𝜇⋆ 𝐵 𝐹 𝑆 , 𝜇⋆ 𝑆  then add 𝐵 to the set of locations that we 

should search their neighborhood: 𝒮 𝒮 ∪ 𝐵, and the set of cuts: 𝒜 𝒜 ∪ 𝐵. 

b.1) If 𝐹 𝐵, 𝜇⋆ 𝐵 𝑏 then update the best objective: 𝑏 𝐹 𝐵, 𝜇⋆ 𝐵 , 

and the location set with best objective: 𝑆 𝐵. 
IV) Remove the set 𝑆  from the set of locations we should search their neighborhood: 

𝒮 𝒮 𝑆  

3. If 𝒮 is empty, STOP and return 𝒜 𝑆 , 𝑆 𝑆 ,𝐹 𝑆 , 𝜇⋆ 𝑆 ,𝒢 𝑆 . Else, go to Step 2. 
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lower and upper bound for SSDP by solving 
MUFLP and applying Algorithm 2 when 𝑆
𝑆MUFLP
⋆ . In the next step, we find an improved 

lower bound for 𝑍SSDP
⋆  by solving the 

MUFLP with some added cuts that shrink the 
feasible region by removing all the subsets 
which have already been searched and 
evaluated in the neighborhood search in 
Algorithm 2. After solving the MUFLP with 

added cuts, we use the location set produced 
by the optimal solution as the starting set in a 
new neighborhood search to improve the 
upper bound using Algorithm 2. To complete 
this step, for every starting location set used 
in Algorithm 2 denoted by 𝒜 ≜ 𝒜 𝑆 , we 
need to add a cut to exclude location sets that 
are in the neighborhood of the starting set. 
Consider the following condition. 

𝑥
∈

𝑥
∈

|𝐵| 3 :∀𝐵 ∈ 𝒜,        10  

 
in which 𝐵 𝑁 𝐵, and |𝐵| is the 
cardinality of 𝐵. Let 𝑥‾ 𝑥‾

∈
 be an 

assignment which determines a set of open 
facilities 𝑆‾, that is 𝑆‾ 𝑗: 𝑥‾ 1, 𝑗 ∈ 𝑁. Thus, 
as noted by Aboolian, Cui, and Shen (2013), 
if 𝑆‾ belongs to a neighborhood of 𝑆MUFLP

⋆ , as 
defined earlier, then 𝑥‾ 𝑥‾

∈
 does not 

satisfy (10). To see why consider a location 
set 𝐵. For any location set 𝐵  in the distance-
2 neighborhood of 𝐵, the right-hand-side of 
(10) will equate to |𝐵| 2 or larger: if 𝐵  is 
obtained by adding one additional facility to 
𝐵, then the right-hand-side of (10) is |𝐵| 1; 

if 𝐵  is obtained by removing one additional 
facility from 𝐵, then the right-hand-side of 
(10) is |𝐵| 1; if 𝐵  is obtained by adding 
two additional facility to 𝐵, then the right-
hand-side of (10) is |𝐵| 2. Therefore, 
constraints (10) excludes the location sets in 
the distance-2 neighborhood of 𝐵 without 
restricting any other location set outside of 
the neighborhood. For a detailed discussion 
on the general case of the 𝑘 distance 
neighborhood search, we refer the reader to 
the work of Aboolian, Cui, and Shen (2013). 
Subsequently, we consider problem 
MUFLP(𝑟). 

MUFLP 𝑟   𝑚𝑖𝑛 ZMUFLP x, y, v f x
∈

c
∈∈

λ v 𝒞ℓ v        11.1

subject to x
∈

x
∈

|S| 1 :∀S ∈ 𝒜𝓇 ,       11.2

7.2 – 7.10

 

 
Here, 𝒜  is the set of all starting 

subsets that have been used in neighborhood 
search in Algorithm 2 in steps 1 through 𝑟
1. Therefore, to solve MUFLP(𝑟) we first 
need to solve MUFLP(𝑡), 𝑡  1, 2, … , 𝑟 1. 
We note that 𝒜  and MUFLP(1) is the 
MUFLP by definition. Also note that 
Constraints 11.2 exclude all location sets that 
have already been evaluated in Algorithm 2, 
without excluding location sets that have not 
yet been evaluated. 

Let 𝑍MUFLP
⋆ , and 𝑆MUFLP

⋆  be the 
optimal value of the MUFLP(𝑟) and the set of 

open facilities corresponding to the optimal 
solution of MUFLP(𝑟), respectively. Define 
𝒟 ⊆ 𝒫 𝑁  to be the set of all location sets 
in the feasible region of MUFLP(𝑟), in which 
𝒫 𝑁  is the power set of 𝑁. Then 𝒟
𝒫 𝑁 , is all possible location sets. 
Additionally, we have 𝒟 𝒟
𝒢 𝑆MUFLP

⋆ , and 𝒜 𝒜 ∪
 𝒜 𝑆MUFLP

⋆ , where 𝒢 𝑆MUFLP
⋆  and 

𝒜 𝑆MUFLP
⋆  are found using Algorithm 2 

when 𝑆 𝑆MUFLP
⋆ . 
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Denote 𝑆 𝑆MUFLP
⋆  and 

𝐹 𝑆 𝑆MUFLP
⋆ , 𝜇⋆ 𝑆 𝑆MUFLP

⋆  as 

the location set solution and the objective 
function value of SSDP given that location 

set, both found using Algorithm 2 when 𝑆
𝑆MUFLP
⋆ . 

Let 𝑈 𝑟  be the improved upper 
bound found after solving MUFLP(𝑟), that is 

U r min  U r 1 ,𝐹 𝑆 𝑆MUFLP
⋆ , 𝜇⋆ 𝑆 𝑆MUFLP

⋆ .       12  

 
It can be simply verified that 𝑈 𝑡  is 

non-increasing in 𝑡. 
Similarly, let 𝐿 𝑟  be the improved 

lower bound found after solving MUFLP(𝑟). 
Thus, we get 

L r ZMUFLP
⋆ .       13  

 
Given the formulation of MUFLP(𝑟), 

it is also easy to verify that 𝐿 𝑡  is non-
decreasing in 𝑡. 

The Search and Cut Algorithm, which 
formalizes this successive improvement for 
further iterations until the optimal solution is 
found, is described as follows: 
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ALGORITHM 3: THE SEARCH AND CUT ALGORITHM FOR SOLVING SSDP 
 

The algorithm terminates in Step 2 
either when every possible location set has 
been evaluated, or when the value of most 
updated lower bound exceeds the value of the 
most updated upper bound. It is easy to 
conclude that when every possible location 

set has been evaluated then the Search and 
Cut algorithm already obtains the optimal 
solution. 

Given the intricacies of the search and 
cut method, we include a diagram illustrating 
the complete methodology in Figure 1. 

Input:  
Output: 𝑍SSDP

⋆ , 𝑆SSDP
⋆  

1. Set 𝑡 1, UB ∞, 𝒜 ∅ and 𝒟 𝒫 𝑁 . 

2. Solve MUFLP(𝑡) and set LB 𝑍MUFLP
⋆ , 𝑆 𝑆MUFLP

⋆ . 

3. If 𝒟 ∅ or LB UB, go to Step 4, else proceed. 

I) Apply Algorithm 2 using 𝑆 to find 𝒜 𝒜 𝑆 , 𝒢 𝒢 𝑆 , 𝑆 𝑆 𝑆 , and 

𝐹 𝑆 , 𝜇⋆ 𝑆 . 

II) Set 𝑡 𝑡 1, 𝒜 𝒜 ∪𝒜, and 𝒟 𝒟 𝒢. 

III) If UB > 𝐹 𝑆 , 𝜇⋆ 𝑆 , then UB = 𝐹 𝑆 , 𝜇⋆ 𝑆  and 𝑆∗ 𝑆 . 

IV) Go to Step 2. 

4. Set 𝑆SSDP
⋆ 𝑆∗, 𝑍SSDP

⋆  = UB, and STOP. 
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FIGURE 1: A FLOWCHART ILLUSTRATING THE COMPLETE SEARCH AND CUT 

METHODOLOGY 
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Before we prove the exactness of the 
approach when lower bound exceeds the 
upper bound, we consider problem SSDP(𝑟). 

SSDP 𝑟   𝑚𝑖𝑛 ZSSDP x, y, z f x
∈

c
∈∈

λ v ω μ z  

       α
∑ λ y∈

∑ μ∈ z ∑ λ y∈∈
       14.1

subject to x
∈

x
∈

|S| 1 :∀S ∈ 𝒜𝓇 ,       14.2

1.2 – 1.9 .

 

 
Recall that 𝒜  is the set of all starting 

subsets that have been used in neighborhood 
search in Algorithm 2 in steps 1 through 𝑟
1. Thus, to solve SSDP(𝑟) we first need to 
solve SSDP(𝑡), 𝑡=1, 2,..., 𝑟 1. We note that 
𝒜  and SSDP(1) is the original SSDP by 
definition. Recall 𝒟 , which is the set of all 
location sets in the feasible region of 
MUFLP(𝑟). We note that 𝒟  is also all 
location sets in the feasible region of 
SSDP(𝑟), that is MUFLP(𝑟) and SSDP(𝑟) 
have the same feasible region. 

Let 𝑍SSDP
⋆  and 𝑆SSDP

⋆  be the 
optimal value of the SSDP(𝑟) and the set of 
open facilities corresponding to the optimal 
solution of SSDP(𝑟), respectively. We note 
that, from the formulation of SSDP(𝑟), it is 
easy to verify that 𝑍SSDP

⋆  is non-decreasing 
in 𝑡. We also note that since MUFLP(𝑟) and 
SSDP(𝑟) have the same feasible region, then 
using the same arguments to prove Lemma 1, 
we conclude 

𝑍MUFLP
⋆ 𝑍SSDP

⋆  for 𝑟 1.       15  
 
The exactness of the Search and Cut 

approach in Algorithm 3 and the fact that it 
will converge to an optimal solution in finite 
number of steps is based on the following 
result: 

Theorem 1 (Exactness of The 
Search and Cut Method) Algorithm 3 
terminates and finds an optimal solution for 
SSDP in 𝑝 steps when 𝒟 ∅ or LB

𝑍MUFLP
⋆ 𝐹 𝑆⋆, 𝜇⋆ 𝑆⋆ UB, and then 

𝑍SSDP
⋆ 𝐹 𝑆⋆, 𝜇⋆ 𝑆⋆ . 

A proof is included in Section 6.1 in 
the Appendix. 

 
3.5. Generalized Benders Decomposition 
for SSDP 

 
Being a MINLP, SSDP is amenable 

for solution by Generalized Benders 
Decomposition (Geoffrion, 1972; Floudas, 
Aggarwal, and Ciric, 1989). Consider the 
SSDP once more, and let 𝑆 ⊆ 𝑁 be a set of 
open facilities, and let 𝑥  be the 
corresponding binary solution in which 

𝑥 𝑥 : 𝑗 ∈ 1,2,⋯ ,𝑁, 𝑥 1 if 𝑗 ∈ 𝑆, 0 otherwise ⋅ 
 
Given 𝑥 , 𝑦  can be determined such 

that all the consumers are assigned to their 
closest facility. That is 

𝑦 𝑦 : 𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁, 𝑦 1 if 𝑗 ∈ 𝑆 and 𝑗 is the closest facility to 𝑖, 0 otherwise . 



Robert Aboolian, Samir Elhedhli, Majid Karimi 
An Efficient Approach for Service System Design with Immobile Servers, Stochastic Demand, Congestion, and Consumer 

Choice 

Journal of Supply Chain and Operations Management, Volume 20, Number 1, September 2022 
 

 17  
  

For a given 𝑆, having fixed variable 
𝑥  to 𝑥‾  and 𝑦  to 𝑦‾ , SSDP reduces to the 
series of subproblems: 

SP 𝑆  min   𝑍 𝐳 𝜔 𝜇‾ 𝛼
∑ 𝜆∈ 𝑦‾

𝜇‾ ∑ 𝜆∈ 𝑦‾
∈

𝑧

subject to:

  𝑧
∈

𝑥‾  ,

  𝜇‾
∈

𝑧 𝜆
∈

𝑦‾  ,

 𝑧 ∈ 0,1 , ∀𝑘 ∈ 𝐾 .

 

 
Recall that 𝐸 𝑆  is the set of 

consumers closest to facility 𝑗 ∈ 𝑆, and 𝛬 𝑆  
is the demand rate at facility 𝑗 given 𝑆, such 
that 𝛬 𝑆 ∑ 𝜆∈ . Moreover, recall 

that 𝑘‾ , is the smallest capacity level for each 
facility as defined in (2). Thus SP 𝑆  can be 
rewritten as the following simple mixed-
integer linear program. 

SP 𝑆  min   𝑍 𝐳 𝜔 𝜇‾ 𝛼
∑ 𝜆∈ 𝑦‾

𝜇‾ ∑ 𝜆∈ 𝑦‾
𝑧

‾
 

subject to:

  𝑧
‾

𝑥‾  ,

 
 𝑧 ∈ 0, 1 , ∀𝑘 ∈ 𝑘‾ ,𝑘‾ 1, … , κ  .

 

 
Furthermore, without altering the 

optimal objective of SP 𝑆 , the binary 
requirement on 𝑧  can be relaxed. 

SP 𝑆  min   𝑍 𝐳 𝜔 𝜇‾ 𝛼
∑ 𝜆∈ 𝑦‾

𝜇‾ ∑ 𝜆∈ 𝑦‾
𝑧

‾
 

subject to:

  𝑧
‾

𝑥‾  ,

 
 𝑧 0, ∀𝑘 ∈ 𝑘‾ ,𝑘‾ 1, … , κ  .

 

 
In light of the almost identical 

problem of determining the optimal 
capacities for a set of open facilities in the 
search and cut methodology and the 
generalized Benders decomposition, it is 
worth discussing why the relaxed LP cannot 

be exploited in both approaches. We note that 
while the degenerate cases violating the 
integrality condition of 𝑧 s do not change the 
optimal objective of SP 𝑆  – which is what 
the generalized Benders decomposition uses 
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in the subproblem duals – the modified 
descent approach as well as the search and cut 
method require the exact choice of 𝑧  

repeatedly throughout Algorithm 1 and 
Algorithm 2. 

The dual of SP 𝑆  is: 
DSP 𝑆  max   𝑌 𝛇 𝜁 𝑥‾

subject to:

 𝜁 𝜔 𝜇‾ 𝛼
𝛬 𝑆

𝜇‾ 𝛬 𝑆
  , ∀𝑘 ∈ 𝑘‾ ,𝑘‾ 1, … , κ  .

 

 
The Generalized Benders master 

problem is: 
 min  MP 𝑞  Z 𝐱, 𝐲, γ γ,       17.1

subject to:

 𝛾 𝑓
∈

𝑥 𝑐
∈∈

𝜆 𝑦 𝜁 ,
⋆

∈

𝑥 0 , ∀𝑡 ∈ 1, 2, … , q 1  ,       17.2

  𝑦
∈

1 , ∀𝑖 ∈ 𝑀 ,       17.3

  𝑐
∈

𝑦 𝑐 𝐿 𝑥 𝐿 , ∀𝑖 ∈ 𝑀 ,∀𝑗 ∈ 𝑁 ,       17.4

 𝑦 𝑥  , ∀𝑖 ∈ 𝑀 ,∀𝑗 ∈ 𝑁 ,       17.5
 𝑦 ∈ 0, 1  , ∀𝑖 ∈ 𝑀 ,∀𝑗 ∈ 𝑁 ,       17.6
 𝑥 ∈ 0, 1  , ∀𝑗 ∈ 𝑁 ,       17.7
 γ 0 , ∀𝑗 ∈ 𝑁 ,        17.8

 

 
in which 𝜁 ,

⋆  is the optimal solution of 
DSP 𝑆 , and 𝑆  is the optimal location set 
of MP 𝑡  for 𝑡 ∈ 1,2,⋯ , 𝑞 1. We note that 
𝜁 ,
⋆ 0, 𝑗 ∈ 𝑁. We also note that if 𝑗 ∉ 𝑆 , 

then 𝜁 ,
⋆ 0. Constraints 17.2 are the 

Benders cuts that are typically added 
iteratively, each time DSP 𝑆 s are solved. 
Given the above formulation MP 1  reduces 
to the traditional UFLP. A solution of SSDP 
can be found by successively solving the sub-
problems and the master problem, with added 
cuts. A necessary condition for finite 
convergence is to have the objective function 
and the feasible set of SSDP to be convex in 
𝐳, once 𝐱 and 𝐲 are fixed, and the feasible set 
of possible realization of 𝐳 values to be 

convex, which is unfortunately not the case 
in this problem as 𝐳 is binary, for a detailed 
discussion see Cai et al. (2001). The 
Generalized Benders Decomposition 
algorithm, however, may still be used as a 
heuristic (Geoffrion, 1972). In all case in 
which we were able to use Generalized 
Benders Decomposition to solve the SSDP 
within the time limit set in the numerical 
experiments, it generated an optimal solution. 
The optimally of the instances were verified 
using the exact method introduced in Section 
3.4. The steps of the proposed Generalized 
Benders Decomposition are detailed in 
Algorithm 4. 
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ALGORITHM 4: SSDP SOLUTION VIA GENERALIZED BENDERS 
DECOMPOSITION 

 
As we discuss in Section 4, the 

generalized Benders decomposition provides 
an efficient solution for SSDP when the 
number of candidate facilities are small 
(relative to the number of consumers). When 
the number of facilities is large, however, the 
Generalized Benders method may not 
provide solutions within a reasonable amount 
of time. 

We also note that generalized 
Benders decomposition, as well as other 
solution approaches for solving SSDP 
discussed in the literature are highly sensitive 
to the value of 𝜅 – the number of capacity 

levels. In contrast, the modified descent 
approach and the search and cut methodology 
– discussed in Section 3.3 and 3.4, 
respectively – which repeatedly use 
Algorithm1 are not as sensitive to an increase 
in 𝜅. This is because finding the capacity 
rates resulting in the least capacity and 
waiting time cost in Algorithm1 has a 
polynomial time complexity. 

 
IV. NUMERICAL TESTING 

 
We tested the two solution 

methodologies of the generalized Benders 

Input: 𝜖 
Output: 𝑆SSDP

⋆ ,𝑍SSDP
⋆  (the set of open facilities and the objective value corresponding to the 

Generalized Benders Decomposition solution of SSDP, respectively) 

1. LB ∞, UB ∞. 

2. Set 𝑡 1, 𝜁 ,
⋆ 0, 𝑗 ∈ 𝑁, and solve MP(1). Let 𝑆 𝑆MP

⋆  be the set of open facilities 

corresponding to the optimal solution of MP 1 . 

3. For 𝑗 ∈ 𝑆 : 

I)  let 𝐸 𝑆 𝑖: 𝑗 argmin ∈ 𝑐  , 𝑖 ∈ 𝑀, and 𝛬 𝑆 ∑ 𝜆∈ .  

II) Let 𝑘     arg min  ∈    𝑘 :  Λ 𝑆    �̅�    for  𝑗  ∈  𝑆. 

III) Solve DSP 𝑆  and let 𝜁 ,
⋆  be the optimal solution of the DSP 𝑆  

4. If UB ∑ 𝑓∈ ∑ ∑ 𝑐∈∈ 𝜆 𝑦‾ ∑ 𝜁 ,
⋆

∈ , then: Set UB ∑ 𝑓∈ ∑ ∈

∑ 𝑐∈ 𝜆 𝑦‾ ∑ 𝜁 ,
⋆

∈ , and 𝑆⋆ 𝑆 . 

5. Set 𝑡 𝑡 1. 

6. Add Benders cut 𝛾 ∑ 𝑓∈ 𝑥 ∑ ∑ 𝑐∈∈ 𝜆 𝑦 ∑ 𝜁 ,
⋆

∈ 𝑥 0. 

7. Solve MP 𝑡 , let 𝑍MP
⋆  and 𝑆 𝑆MP

⋆  be the optimal objective, and the set of facilities 

corresponding to the optimal solution, and set LB 𝑍MP
⋆ . 

8. If UB LB 𝜖, set 𝑆SSDP 𝑆⋆,𝑍SSDP UB and STOP. Else go to Step 4. 
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decomposition and search and cut on a 
hypothetical problem of locating a set of 
service facilities in the city of Toronto, 
Canada. We assume that the new service will 
be targeted to a demographic, who makes up 
roughly 1% of the Canadian population and 
require service ten times a year. We assume 
the maximum probability of participation to 
be 95% (i.e., this is the probability of 
participation by the member of the target 
demographic). We assume that each service 
facility will be open 52 weeks per year, 5 
days per week, and 10 hours per day. The 
waiting cost is assumed to be 𝛼 =$20 per 
hour. The travelling cost is 𝜃 dollars per hour 
which might be lower (if the travel is on the 
way to work), higher (if we also consider the 
transportation cost on the top of lost time) or 
the same as waiting cost. Therefore we 
consider 𝜃 ∈ 0.5𝛼,𝛼, 2𝛼 . Furthermore, we 

set 𝑐 𝜃 , in which 40 miles/hour is the 

average speed in the City of Toronto. We 
assume 10 levels of available capacity for 
each facility. Each service facility will house 
a certain capacity, with a maximum capacity 
of 120% of the overall demand rate. That is 
𝜇‾ 1.2∑ 𝜆∈ 1.2𝛬. In particular 𝜇‾ ∈

. , . ,⋯ , . , 1.2𝛬 ,∀𝑘 ∈ 1,2,⋯ ,10 , 

in which 𝜇‾  is a scalar denoting the 𝑘th level 
of capacity rate. We assume that the hourly 
operating cost for the first capacity unit is 𝛽. 
The cost for each additional unit will 
decrease. We set 𝛽𝜇  to be the cost to 
obtain 𝜇 units of capacity, where 𝜙 1. We 
consider three values of 𝜙 ∈ 0.5,0.75,0.99 . 
Moreover, we consider various values of 𝛽 in 
which 𝛽 0.1𝛼, 0.5𝛼,𝛼, 2𝛼 , and 10𝛼. 
The city of Toronto is divided into 96 regions 
called Forward Sortation Areas (FSAs), see 
Fig. 2. 

 
FIGURE 2: CITY OF TORONTO’S POSTAL CODE BOUNDARIES AT THE FSA. THE 
FSA IS CONTAINED WITHIN THE FIRST THREE CHARACTERS OF THE POSTAL 

CODE AND IS USED TO IDENTIFY AN URBAN OR RURAL GEOGRAPHICAL AREA 
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These regions are roughly equivalent 
to the 5‐digit ZIP codes in the US. Euclidean 
travel distance between the region centroids 
is assumed. Demographic data at the FSA 
level is available from Statistics 
Canada (Statistics Canada, 2016). Finally, 
for fixed location costs we use the current 
commercial real estate lease prices per square 
foot (averaged for each FSA) provided by the 
Toronto Real Estate Board (Toronto Real 
State Board, 2019), and we assume a 2000 
square foot size for each facility. We consider 
three cases with 𝑚 96, and 𝑛 10,24, and 
96 and solve problems for different 
combinations of 𝛽, 𝜃, and 𝜙 (45 in total). In 
each problem, we solved the corresponding 
SSDP using both algorithms and find the 
optimal location, optimal cost, CPU time and 
optimal assignments. 

All problem instances were solved on 
a machine with 3.4 GHz 4-Core Intel Core i5 
CPU, with 16 GB RAM running macOS 
Mojave. We set the time limit of 7200 
seconds (2 hours) for each instance for both 
Generalized Benders Decomposition (with 
𝜖 0.001) and Search and Cut 
methodologies. If the algorithm failed to 
converge during this time, the relative gap is 
reported. All problem instances were solved 
using the python docplex package, version 
2.9.141, except MCWCPs (5) which were 
solved using Wolfram Mathematica (version 
11.1.1.0) and its FindMinimum function with 

the accuracy goal set to 10,000, which 
enforces the convergence criteria of |𝑥
𝑥⋆| 10  and 𝛻𝑓 𝑥 10  for 
the FindMinimum function. MCWCPs were 
solved for an average of 0.5885, 1.9322, and 
23.2393 seconds for the three parameters of 
𝑛 10,  24, and 96, respectively. 

When applying Generalized Benders 
Decomposition, for 𝑛 24, only 15 (out of 
45) instances of the converge within the time 
limit of 2 hours, and for the cases that do not 
converge, the average solution gap is 
approximately 5%. As such, we only report 
the Search and Cut method’s results for the 
case of 𝑛 24 and 𝑛 96. A detailed 
summary of the test is presented in Table 1, 
Table 2, and Table 3 (see Table 4 for a 
reference of FSAs to numerical IDs) in 
Section 6.2 in the Appendix. 

The numerical results provide further 
insight into various model parameters such as 
capacity cost, access cost, the degree of 
concavity of the capacity function, and the 
number of candidate facilities. 

Capacity Cost: Parameter 𝛽 has a 
non-linear relationship with CPU time, in 
which the initial increase in 𝛽 decreases the 
CPU time, and further increase of 𝛽 results in 
a spike of CPU time. Additionally, as 𝛽 
increases, number of open facilities, and total 
service capacity decrease; and the total 
average distance increases, see Fig. 3. 

 
FIGURE 3: THE EFFECT OF PARAMETER 𝜷 ON AVERAGE: CPU TIME, NUMBER 
OF FACILITIES LOCATED, TOTAL CAPACITY, AND DISTANCE TO FACILITIES 

LOCATED 
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The CPU time results are mainly due 
to the fact that extreme capacity costs, too 
small or too large, increases the size of the 
neighborhood with potential improvement in 
the modified descent algorithm, Algorithm 2. 
As such, the search takes a longer time to find 
the best set of improvements. The effect of 𝛽 
on the number of open facilities, capacity 
levels, and average distances are more 

straightforward. Higher capacity cost means 
a lower number of facilities will be selected 
which results in larger travel distances and 
lower capacity level assignments. 
Access Cost: When 𝜃 increases, the CPU 
time, number of open facilities, and total 
service capacity increases while the total 
average distances decrease, see Fig. 4. 

 
FIGURE 4: THE EFFECT OF PARAMETER 𝜽 ON AVERAGE: CPU TIME, NUMBER 
OF FACILITIES LOCATED, TOTAL CAPACITY, AND DISTANCE TO FACILITIES 

LOCATED 
 
The access cost has an opposite effect 

on the number of open facilities, capacity 
levels, and average distances, when 
compared to the capacity cost. Higher access 
cost means that more facilities should be 
utilizes, which in turn increases the capacity 
levels and decreases the distance traveled by 
consumers to receive services. The higher 
access cost also increases the size of the 
neighborhood with potential improvement in 

the modified descent algorithm, which results 
in longer time spent on the search for finding 
improved set of open facilities. 
Capacity Concavity: As 𝜙 increases, the 
CPU time decreases initially and spikes when 
𝜙 0.99. Furthermore, as 𝜙 increases the 
number of open facilities and total service 
capacity decrease; and total average distance 
increases, see Fig. 5. 

 
FIGURE 5: THE EFFECT OF PARAMETER 𝝓 ON AVERAGE: CPU TIME, NUMBER 
OF FACILITIES LOCATED, TOTAL CAPACITY, AND DISTANCE TO FACILITIES 

LOCATED 
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Since most of the capacity levels 
assigned are greater than 1, as the degree of 
the concavity of the capacity increases, so 
does the capacity cost. Thus, the effects of the 
degree of the concavity of the capacity cost 
are akin to the effects of capacity cost for 
similar reasons. 

Number of candidate facilities: As 
expected, the increase in the number of 
candidate facilities increases the complexity 
of the solutions measured by CPU time, see 
Figure 6. 

 
FIGURE 6: THE EFFECT OF PARAMETER 𝓷 ON AVERAGE: CPU TIME, NUMBER 
OF FACILITIES LOCATED, TOTAL CAPACITY, AND DISTANCE TO FACILITIES 

LOCATED 
 
For the Search and Cut methodology, 

the average CPU time is increased by a factor 
of approximately 7.6 times (minimum factor 
of 4.56, maximum factor of 28.00) when 
increasing the number of candidate facilities 
from 𝑛 10 to 𝑛 24. The complexity is 
further increased by a factor of 
approximately 27.2 times (minimum factor 
of 6.31, maximum factor of 143.93) when the 
number of candidate facilities increases from 
𝑛 24 to 𝑛 96. The average improvement 
of the optimal costs are disproportionate to 
the increase of complexity, in which on 
average, the optimal costs are approximately 
0.6% and 1.6% lower for the change from 
𝑛 10 to 𝑛 24, and from 𝑛 24 to 𝑛
96 respectively. 

 
V. CONCLUSION 

 
In this paper, we discuss the service 

system design problem for congested 
facilities that behave as M/M/1 queuing 
systems where consumers choose which 
facility to use, and the problem is to locate 
facilities and allocate service capacity to 

minimize the overall cost of the social 
system. The problem is modeled as a MINLP. 
The nonlinearity of the objective function is 
the challenging part of developing an exact 
solution approach, but we exploit the 
structure of the model and provide two exact 
approaches. In the first approach, we apply 
Generalized Benders Decomposition of the 
problem into various LP subproblems and 
MIP master problems. In the second 
methodology, we use a novel special-purpose 
algorithm in which we define a MIP model to 
find the lower bound and a modified descent 
search approach to find an upper bound. At 
each step, we add a set of cuts of the solution 
space which has been recently searched and 
resolve the MIP to find an improved lower 
bound and continue the search of the solution 
space to improve the upper bound. We repeat 
these steps until the overall cost of the most 
updated lower bound becomes greater than 
the overall cost of the most updated upper 
bound. We then prove that when the overall 
cost of the most updated upper bound is less 
than the overall cost of the most updated 
lower bound, then the solution to the most 
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updated upper bound is the optimal solution 
to the original problem. The Generalized 
Benders Decomposition approach tends to be 
efficient for small size problems (96 demand 
points, ten candidate facilities, and ten 
capacity levels). However, its efficiency 
decreases as we increase the number of 
candidate facilities to 24. The Search and Cut 
approach seems to be more efficient for both 
small and large size problems. The Search 
and Cut approach finds optimal solutions in a 
reasonable time for problems with as large as 
96 demand points, 96 candidate facilities, and 
ten capacity levels. We also want to 
emphasize that the Search and Cut approach 
with minor modifications could also be used 
to optimally solve the M/M/k case 
significantly better than the algorithm offered 
in Aboolian, Berman, and Drezner (2008). 
For future research, we would like to suggest 
developing exact methodologies capable of 
solving the following problems. 
• The problems in which the facilities 

behave as M/G/1 queuing system, 
similar to Vidyarthi and Jayaswal 
(2014), but with consumer choice 
considerations. 

• The problems in which the service 
capacity is continuous and can take any 
value, similar to Elhedhli, Wang, and 
Saif (2018), but with consumer choice 
considerations. 
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APPENDIX 
 
A.1. Proofs 
 
Proof of Lemma 1. 

𝑍SSDP
⋆ 𝐹 𝑆SSDP

⋆ , 𝜇⋆ 𝑆SSDP
⋆

𝑓
∈ SSDP

⋆

𝑐
∈∈ SSDP

⋆

𝜆 𝐹‾ 𝑆SSDP
⋆ , 𝜇⋆ 𝑆SSDP

⋆

𝑓
∈ SSDP

⋆

𝑐
∈∈ SSDP

⋆

𝜆 𝒞
SSDP
∗

⋆ ,       8

 

in which 𝐹 ⋅ , and 𝐹‾ ⋅  are as found in Algorithm 1, and the inequality is derived from (6). 
Furthermore, since 𝑆SSDP

⋆  is a feasible solution of MUFLP, we get 

𝑍MUFLP
⋆ 𝑓

∈ MUFLP
⋆

  𝑐
∈

λ
∈ MUFLP

⋆
  𝒞

MUFLP
∗

⋆

𝑓
∈ SSDP

⋆

𝑐
∈∈ SSDP

⋆

𝜆 𝒞
SSDP
∗

⋆

𝑍SSDP
⋆ ,

 

which completes the proof.          
  
Proof of Theorem 1. It is evident that if 𝒟 ∅, then the neighborhood search must have exhausted 
all the location sets and found the optimal solution by complete enumeration. To see why 𝑍SSDP

⋆

𝐹 𝑆⋆, 𝜇⋆ 𝑆⋆  when 𝑍MUFLP
⋆ 𝐹 𝑆⋆, 𝜇⋆ 𝑆⋆ , assume otherwise and let 𝑍SSDP

⋆

𝐹 𝑆⋆, 𝜇⋆ 𝑆⋆ , while 𝑍MUFLP
⋆ 𝐹 𝑆⋆, 𝜇⋆ 𝑆⋆ . Since 𝑍SSDP

⋆ 𝐹 𝑆⋆, 𝜇⋆ 𝑆⋆ , then 𝑍SSDP
⋆

𝐹 𝑆⋆, 𝜇⋆ 𝑆⋆ , 𝑡 ∈ 1,2,⋯ ,𝑝 1 , and consequently 𝑆SSDP
⋆ ∈ 𝒟 . Hence the following holds. 

𝑍MUFLP
⋆ 𝑍SSDP

⋆ 𝑍SSDP
⋆ 𝐹 𝑆⋆, 𝜇⋆ 𝑆⋆ , 16  

in which the first inequality is derived from equation (15), and the equality is true since 𝑆SSDP
⋆  

belongs to 𝒟 , the feasible region of SSDP 𝑝 . Finally, the second inequality is true since 𝑆SSDP
⋆ ∈

𝒟  has yet to be evaluated in the neighborhood search in Algorithm 2 in search of an upper bound. 

As such 𝑍MUFLP
⋆ 𝐹 𝑆⋆, 𝜇⋆ 𝑆⋆  and the claim is proved by contradiction. Finally, we note 

that although the search and cut approach is not a branch-and-bound method, but similar to branch-
and-bound method, it exhausts all of the possible solutions to an optimal solution.    
  
 
A.2. Detailed Numerical Results 
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TABLE 1: NUMERICAL TESTING OF THE PROBLEM FOR TORONTO FSA DATA 
USING THE SEARCH AND CUT, AND GENERALIZED BENDERS DECOMPOSITION 

FOR 𝒏  𝟏𝟎 
Instance  Solution and Optimal Cost  Solution Via GBD  Solution Via Search and Cut 

𝛽 𝜃 𝜙  𝑆SSDP
⋆  𝑍SSDP

⋆   CPU 
Time 

Status # of 
Iter. 

# of 
Cuts 

 CPU 
Time 

Status # of 
Iter. 

# of 
Cuts 

2 10 0.5 
 

[12, 69] 273.07 
 

9.07 Optimal 7 6 
 

5.06 Optimal 2 2 
2 10 0.75 

 
[12, 69] 357.11 

 
21.90 Optimal 20 19 

 
2.55 Optimal 1 1 

2 10 0.99 
 

[12, 69] 572.75 
 

26.28 Optimal 24 23 
 

2.53 Optimal 1 1 
2 20 0.5 

 
[12, 51, 69, 87] 430.40 

 
21.58 Optimal 15 14 

 
4.28 Optimal 1 1 

2 20 0.75 
 

[12, 69, 87] 536.82 
 

41.43 Optimal 29 28 
 

4.85 Optimal 1 2 
2 20 0.99 

 
[12, 69] 752.84 

 
69.21 Optimal 49 48 

 
2.62 Optimal 1 1 

2 40 0.5 
 

[12, 31, 64, 87] 687.03 
 

17.99 Optimal 10 9 
 

4.34 Optimal 1 1 
2 40 0.75 

 
[12, 31, 64, 87] 804.30 

 
34.60 Optimal 21 20 

 
4.33 Optimal 1 1 

2 40 0.99 
 

[12, 31, 64, 87] 1043.89 
 

86.30 Optimal 48 47 
 

7.98 Optimal 2 2 
10 10 0.5 

 
[12, 69] 311.12 

 
12.71 Optimal 11 10 

 
5.15 Optimal 2 2 

10 10 0.75 
 

[12, 69] 576.65 
 

49.46 Optimal 37 36 
 

3.92 Optimal 2 2 
10 10 0.99 

 
[69] 1488.12 

 
150.74 Optimal 79 78 

 
3.92 Optimal 2 2 

10 20 0.5 
 

[12, 69, 87] 486.54 
 

32.60 Optimal 24 23 
 

3.18 Optimal 1 1 
10 20 0.75 

 
[12, 69] 756.74 

 
69.15 Optimal 47 46 

 
5.23 Optimal 2 2 

10 20 0.99 
 

[12, 69] 1703.80 
 

193.50 Optimal 94 93 
 

4.13 Optimal 2 2 
10 40 0.5 

 
[12, 31, 64, 87] 752.33 

 
27.92 Optimal 17 16 

 
4.26 Optimal 1 1 

10 40 0.75 
 

[12, 31, 64, 87] 1089.52 
 

103.71 Optimal 57 56 
 

4.36 Optimal 1 1 
10 40 0.99 

 
[12, 69] 2063.98 

 
209.52 Optimal 97 96 

 
5.37 Optimal 2 2 

20 10 0.5 
 

[12, 69] 338.80 
 

17.00 Optimal 15 14 
 

5.08 Optimal 2 2 
20 10 0.75 

 
[69] 724.41 

 
77.01 Optimal 51 50 

 
3.85 Optimal 2 2 

20 10 0.99 
 

[69] 2509.02 
 

159.09 Optimal 81 80 
 

4.03 Optimal 2 2 
20 20 0.5 

 
[12, 69] 518.89 

 
32.01 Optimal 24 23 

 
5.26 Optimal 2 2 

20 20 0.75 
 

[12, 69] 944.09 
 

80.47 Optimal 54 53 
 

2.54 Optimal 1 1 
20 20 0.99 

 
[62] 2767.63 

 
341.93 Optimal 136 135 

 
3.96 Optimal 2 2 

20 40 0.5 
 

[12, 31, 64, 87] 796.47 
 

33.27 Optimal 19 18 
 

4.26 Optimal 1 1 
20 40 0.75 

 
[12, 69] 1304.27 

 
126.82 Optimal 66 65 

 
2.80 Optimal 1 1 

20 40 0.99 
 

[12, 69] 3159.26 
 

391.35 Optimal 143 142 
 

5.23 Optimal 2 2 
40 10 0.5 

 
[12, 69] 376.95 

 
24.29 Optimal 22 21 

 
2.51 Optimal 1 1 

40 10 0.75 
 

[69] 955.86 
 

56.52 Optimal 40 39 
 

3.86 Optimal 2 2 
40 10 0.99 

 
[69] 4455.84 

 
161.70 Optimal 81 80 

 
3.90 Optimal 2 2 

40 20 0.5 
 

[12, 69] 557.03 
 

29.01 Optimal 23 22 
 

2.73 Optimal 1 1 
40 20 0.75 

 
[62] 1214.47 

 
114.39 Optimal 63 62 

 
3.97 Optimal 2 2 

40 20 0.99 
 

[62] 4714.44 
 

342.22 Optimal 132 131 
 

3.97 Optimal 2 2 
40 40 0.5 

 
[12, 31, 64, 87] 854.58 

 
36.75 Optimal 22 21 

 
4.27 Optimal 1 1 

40 40 0.75 
 

[12, 69] 1619.01 
 

172.17 Optimal 87 86 
 

5.26 Optimal 2 2 
40 40 0.99 

 
[62] 5227.31 

 
595.11 Optimal 185 184 

 
10.02 Optimal 2 6 

200 10 0.5 
 

[12, 69] 527.50 
 

35.31 Optimal 29 28 
 

2.71 Optimal 1 1 
200 10 0.75 

 
[69] 2293.95 

 
72.32 Optimal 47 46 

 
3.87 Optimal 2 2 

200 10 0.99 
 

[69] 19826.4 
 

223.20 Optimal 79 78 
 

3.86 Optimal 2 2 
200 20 0.5 

 
[12, 69] 707.59 

 
49.64 Optimal 39 38 

 
2.55 Optimal 1 1 

200 20 0.75 
 

[62] 2552.55 
 

119.90 Optimal 67 66 
 

3.95 Optimal 2 2 
200 20 0.99 

 
[62] 20085 

 
327.31 Optimal 127 126 

 
5.93 Optimal 3 3 

200 40 0.5 
 

[12, 64, 87] 1067.41 
 

84.45 Optimal 49 48 
 

2.75 Optimal 1 1 
200 40 0.75 

 
[62] 3065.42 

 
266.46 Optimal 88 87 

 
3.96 Optimal 2 2 

200 40 0.99 
 

[62] 20597.9 
 

505.60 Optimal 166 165 
 

9.82 Optimal 5 5 
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TABLE 2: NUMERICAL TESTING OF THE PROBLEM FOR TORONTO FSA DATA 
USING THE SEARCH AND CUT FOR 𝒏  𝟐𝟒 

Instance  Solution via Search and Cut 

𝛽 𝜃 𝜙  𝑆SSDP
⋆  𝑍SSDP

⋆  CPU Time Status # of Iter. # of Cuts 

2 10 0.5 
 

[12, 69] 273.07 32.61 Optimal 2 2 
2 10 0.75 

 
[12, 69] 357.11 14.96 Optimal 1 1 

2 10 0.99 
 

[12, 69] 572.75 15.30 Optimal 1 1 
2 20 0.5 

 
[3, 27, 41, 69, 87] 413.53 31.68 Optimal 1 1 

2 20 0.75 
 

[3, 27, 41, 87] 534.23 26.24 Optimal 1 1 
2 20 0.99 

 
[12, 69] 752.84 14.64 Optimal 1 1 

2 40 0.5 
 

[3, 7, 15, 27, 41, 64, 69, 87, 91] 633.48 121.48 Optimal 1 2 
2 40 0.75 

 
[3, 72, 15, 87, 27, 41, 91] 778.46 85.93 Optimal 1 2 

2 40 0.99 
 

[3, 27, 41, 72, 87, 91] 1030.28 130.29 Optimal 4 4 
10 10 0.5 

 
[12, 69] 311.12 26.94 Optimal 2 2 

10 10 0.75 
 

[12, 69] 576.65 22.97 Optimal 2 2 
10 10 0.99 

 
[27] 1483.42 22.51 Optimal 2 2 

10 20 0.5 
 

[3, 27, 41, 87] 482.40 26.44 Optimal 1 1 
10 20 0.75 

 
[12, 69] 756.74 26.95 Optimal 2 2 

10 20 0.99 
 

[12, 69] 1703.80 27.23 Optimal 2 2 
10 40 0.5 

 
[3, 27, 41, 72, 87, 91] 725.86 40.41 Optimal 1 1 

10 40 0.75 
 

[94, 3, 72, 27] 1085.29 73.33 Optimal 2 3 
10 40 0.99 

 
[12, 69] 2063.98 50.63 Optimal 3 3 

20 10 0.5 
 

[12, 69] 338.80 27.07 Optimal 2 2 
20 10 0.75 

 
[27] 719.71 22.66 Optimal 2 2 

20 10 0.99 
 

[27] 2504.32 22.45 Optimal 2 2 
20 20 0.5 

 
[12, 69] 518.89 32.69 Optimal 2 2 

20 20 0.75 
 

[12, 69] 944.09 14.33 Optimal 1 1 
20 20 0.99 

 
[49] 2767.22 22.44 Optimal 2 2 

20 40 0.5 
 

[3, 27, 41, 72, 87, 91] 782.23 40.46 Optimal 1 1 
20 40 0.75 

 
[12, 69] 1304.27 14.48 Optimal 1 1 

20 40 0.99 
 

[12, 69] 3159.26 45.26 Optimal 3 3 
40 10 0.5 

 
[12, 69] 376.95 14.26 Optimal 1 1 

40 10 0.75 
 

[27] 951.16 22.77 Optimal 2 2 
40 10 0.99 

 
[27] 4451.13 22.46 Optimal 2 2 

40 20 0.5 
 

[12, 69] 557.03 14.42 Optimal 1 1 
40 20 0.75 

 
[49] 1214.06 22.48 Optimal 2 2 

40 20 0.99 
 

[49] 4714.03 22.96 Optimal 2 2 
40 40 0.5 

 
[3, 27, 64, 87] 849.07 25.58 Optimal 1 1 

40 40 0.75 
 

[12, 78] 1611.87 38.56 Optimal 2 3 
40 40 0.99 

 
[12, 78] 5210.07 45.72 Optimal 2 4 

200 10 0.5 
 

[12, 69] 527.50 14.37 Optimal 1 1 
200 10 0.75 

 
[27] 2289.24 22.81 Optimal 2 2 

200 10 0.99 
 

[27] 19821.73 22.44 Optimal 2 2 
200 20 0.5 

 
[12, 69] 707.59 14.28 Optimal 1 1 

200 20 0.75 
 

[49] 2552.14 22.51 Optimal 2 2 
200 20 0.99 

 
[49] 20084.63 35.57 Optimal 3 3 

200 40 0.5 
 

[12, 31, 72] 1062.82 19.89 Optimal 1 1 
200 40 0.75 

 
[49] 3064.79 23.08 Optimal 2 2 

200 40 0.99 
 

[49] 20597.27 112.50 Optimal 9 9 
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TABLE 3: NUMERICAL TESTING OF THE PROBLEM FOR TORONTO FSA DATA 
USING THE SEARCH AND CUT FOR 𝒏  𝟗𝟔. IN CASE THE ALGORITHM DID 

NOT CONVERGE WITHIN THE TIME LIMIT, THE OPTIMAL VALUE AND THE 
CORRESPONDING OPTIMAL SET OF OPEN FACILITIES WERE FOUND BY 

SETTING A HIGHER TIME THRESHOLD 
Instance  Solution via Search and Cut 

𝛽 𝜃 𝜙  𝑆SSDP
⋆  𝑍SSDP

⋆  CPU Time Status # of Iter. # of Cuts 
2 10 0.5 

 
[14, 41, 77] 259.91 654.79 Optimal 2 2 

2 10 0.75 
 

[26, 77] 349.93 451.52 Optimal 2 2 
2 10 0.99 

 
[26, 77] 566.66 453.60 Optimal 2 2 

2 20 0.5 
 

[4, 27, 41, 77] 397.04 447.69 Optimal 1 1 
2 20 0.75 

 
[14, 41, 77] 514.16 339.81 Optimal 1 1 

2 20 0.99 
 

[14, 41, 77] 741.09 656.14 Optimal 2 2 
2 40 0.5 

 
[64, 4, 37, 84, 92, 29, 14] 594.83 1753.88 Optimal 1 2 

2 40 0.75 
 

[64, 4, 37, 84, 92, 29, 14] 739.14 722.91 Optimal 1 1 
2 40 0.99 

 
[64, 4, 37, 87, 29, 14] 992.60 6976.94 Optimal 8 10 

10 10 0.5 
 

[26, 77] 301.91 455.20 Optimal 2 2 
10 10 0.75 

 
[26, 77] 569.28 455.35 Optimal 2 2 

10 10 0.99 
 

[27] 1483.42 376.84 Optimal 2 2 
10 20 0.5 

 
[14, 41, 77] 463.21 341.29 Optimal 1 1 

10 20 0.75 
 

[26, 77] 751.81 459.20 Optimal 2 2 
10 20 0.99 

 
[26, 77] 1705.47 671.86 Optimal 3 3 

10 40 0.5 
 

[4, 14, 29, 37, 72, 87] 686.86 720.75 Optimal 1 1 
10 40 0.75 

 
[11, 29, 50, 87] 1054.76 870.02 Optimal 2 2 

10 40 0.99 
 

[64, 92, 27, 4] 2054.05 7287.83 Gap 0.03% 12 20 
20 10 0.5 

 
[26, 77] 330.42 454.79 Optimal 2 2 

20 10 0.75 
 

[27] 719.71 381.69 Optimal 2 2 
20 10 0.99 

 
[27] 2504.32 377.36 Optimal 2 2 

20 20 0.5 
 

[14, 41, 77] 500.50 342.60 Optimal 1 1 
20 20 0.75 

 
[26, 77] 941.61 462.40 Optimal 2 2 

20 20 0.99 
 

[48] 2765.23 379.25 Optimal 2 2 
20 40 0.5 

 
[4, 14, 29, 37, 72, 87] 743.43 726.93 Optimal 1 1 

20 40 0.75 
 

[14, 50, 77] 1285.17 659.89 Optimal 2 2 
20 40 0.99 

 
[12, 69] 3159.26 3552.17 Optimal 8 14 

40 10 0.5 
 

[26, 77] 369.60 455.50 Optimal 2 2 
40 10 0.75 

 
[27] 951.16 379.55 Optimal 2 2 

40 10 0.99 
 

[27] 4451.13 377.10 Optimal 2 2 
40 20 0.5 

 
[14, 41, 77] 550.37 340.82 Optimal 1 1 

40 20 0.75 
 

[48] 1212.08 379.44 Optimal 2 2 
40 20 0.99 

 
[48] 4712.05 380.55 Optimal 2 2 

40 40 0.5 
 

[64, 36, 87, 29, 13] 817.99 1116.19 Optimal 1 2 
40 40 0.75 

 
[12, 77] 1602.75 243.44 Optimal 1 1 

40 40 0.99 
 

[12, 78] 5210.07 1979.01 Optimal 6 9 
200 10 0.5 

 
[26, 77] 521.07 457.50 Optimal 2 2 

200 10 0.75 
 

[27] 2289.24 376.58 Optimal 2 2 
200 10 0.99 

 
[27] 19821.73 378.09 Optimal 2 2 

200 20 0.5 
 

[26, 77] 703.60 462.98 Optimal 2 2 
200 20 0.75 

 
[48] 2550.16 378.29 Optimal 2 2 

200 20 0.99 
 

[48] 20082.64 812.72 Optimal 4 4 
200 40 0.5 

 
[14, 50, 77] 1036.89 663.20 Optimal 2 2 

200 40 0.75 
 

[48] 3060.63 384.94 Optimal 2 2 
200 40 0.99 

 
[48] 20593.12 6606.29 Optimal 30 30 
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TABLE 4: REFERENCE TABLE OF FSA TO NUMERICAL IDS. ⋆ INDICATE THE 
FSA CORRESPONDING TO CANDIDATE FACILITY LOCATIONS CONSIDERED 

FOR THE CASE OF 𝒏 𝟐𝟒,𝟗𝟔, AND ⋆⋆INDICATE THE FSA CORRESPONDING TO 
CANDIDATE FACILITY LOCATIONS CONSIDERED FOR A 

FSA ID FSA ID FSA ID FSA ID FSA ID FSA ID 

M1B 1 M1X 17 M3M 33 M4V⋆ 49 M5T 65 M6S 81 

M1C 2 M2H 18 M3N 34 M4W 50 M5V⋆ 66 M8V 82 

M1E⋆ 3 M2J 19 M4A 35 M4X⋆⋆ 51 M5W 67 M8W 83 

M1G 4 M2K⋆⋆ 20 M4B 36 M4Y 52 M6A 68 M8X 84 

M1H 5 M2L 21 M4C 37 M5A 53 M6B⋆⋆ 69 M8Y 85 

M1J 6 M2M 22 M4E 38 M5B 54 M6C 70 M8Z⋆⋆ 86 

M1K⋆ 7 M2N⋆ 23 M4G⋆⋆ 39 M5C 55 M6E 71 M9A⋆⋆ 87 

M1L 8 M2P 24 M4H 40 M5E 56 M6G⋆ 72 M9B 88 

M1M 9 M2R 25 M4J⋆ 41 M5G 57 M6H 73 M9C 89 

M1N 10 M3A 26 M4L 42 M5H 58 M6J 74 M9L 90 

M1P 11 M3B⋆ 27 M4M⋆ 43 M5J 59 M6K 75 M9M⋆ 91 

M1R⋆⋆ 12 M3C 28 M4N 44 M5M⋆ 60 M6L 76 M9N 92 

M1S 13 M3H 29 M4P 45 M5N 61 M6M 77 M9P 93 

M1T 14 M3J 30 M4R 46 M5P⋆⋆ 62 M6N⋆ 78 M9R⋆ 94 

M1V⋆ 15 M3K⋆⋆ 31 M4S 47 M5R 63 M6P 79 M9V 95 

M1W 16 M3L 32 M4T 48 M5S⋆⋆ 64 M6R 80 M9W 96 

 
 
 


