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The purpose of this study is to improve estimates for activity time distributions used in stochastic 

project network models for situations that involve nonproject or nonroutine delays.  Examples of 

different types of nonproject delays include the weather, late deliveries, equipment breakdowns, 

etc., that estimators may include in estimates of activity time distributions along with project task 

delays.  However, such estimates are univariate in that they do not distinguish between different 

types of delays.  This study proposes a bivariate approach requiring separate estimates of 

distributions for project task delays and for one type of nonproject delay, leading to a marginal 

distribution as the resulting activity time distribution which captures both types of delays.  A 

technique is proposed to determine if differences in entropy between univariate and bivariate 

approaches are significant.  The Principle of Maximum Entropy is employed as a criterion to 

determine the best estimator.  An example is included to illustrate the concepts developed in this 

study. 
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I.    INTRODUCTION  

 

Project network simulation attempts to 

capture the uncertainty of real world projects 

by structuring project activities within a 

stochastic network framework to better 

manage projects.  The discrete entropy 

function as developed by (Shannon, 1948) 

provides a well established measure of 

uncertainty from information and 

communication theory, and is finding its way 

to more applications in mainstream statistics.  

This study employs both univariate and 

bivariate entropy within a statistical 

methodology which includes both project task 

delays and a nonproject delay for generating 

activity time distributions.   

Project task delays are tasks directly 

associated with doing the project.  Nonproject 

delays are not directly associated with 

completing the project but have likelihoods 

that can significantly add to delays in 

completing one or more activities.  To better 

simplify the terminology and notation, the 

terms direct delays for the former and indirect 

delays for the latter will be used from this 

point throughout the study.  An example of a 

direct delay is the activity of laying the 

foundation for a new building.  This activity 

could be the aggregation of several basic tasks 

(i.e., simple tasks that when taken separately 

offer no significant benefit as stand-alone 

activities).  The basic tasks could include earth 

moving, setting up wooden forms for the 

basement floor and outer walls, pouring 

concrete into the forms, waiting for the 

concrete to dry and cure, and removing the 

wooden forms.  Examples of two types of 

indirect delays include a construction delay in 

laying the foundation of a building from poor 
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weather, or a manufacturing delay in building 

a prototype of a new aircraft due to the late 

delivery of parts.  In reference to indirect delay 

types, each type has its own probability 

function.   

Note that given their very low 

likelihoods in everyday life, indirect delays 

that are extraordinary or catastrophic should 

generally be excluded from consideration.  

Examples include fire or flooding at the plant, 

road closures from earthquakes or storms, or 

delays attributed to acts of God. 

This study will show that activity time 

distributions can be found which 

accommodate both direct and indirect delays 

when both delays are estimated separately.  

The desired activity time distribution can be 

generated from simulation, or derived 

analytically as a marginal distribution from 

bivariate statistics if only one type of indirect 

delay type is considered, which is 

demonstrated in this study.   This is in contrast 

to the practice of lumping together direct and 

indirect delays within a single estimate of a 

Beta Distribution as the activity time 

distribution.  For example, assume that an 

activity is described by a Beta Distribution and 

is based on the usual estimates for a, m, and b 

which represent optimistic, most likely, and 

most pessimistic times.  If an estimator made 

an estimate of only a direct delay and was later 

required to revise that estimate to consider 

both direct and indirect delays, the resulting 

activity time distribution would likely be a 

single estimate of a unimodal Beta 

Distribution with a unchanged and larger time 

estimates for m and b to capture the indirect 

delay (i.e., as single estimate distribution).  An 

example based on the methodology proposed 

in this study assumes that the estimator makes 

an estimate of the direct delay as a Beta 

Distribution followed by a separate estimate 

of a distribution for an indirect delay.  These 

estimates are then combined into a multimodal 

marginal distribution.  It is then shown that the 

unimodal Beta Distribution has significantly 

less entropy (uncertainty) than the multimodal 

marginal distribution. Use of the unimodal 

distribution over the multimodal distribution 

as an activity time distribution in this situation 

would be a violation of the Principle of 

Maximum Entropy, which states that the 

probability distribution which best represents 

the current state of knowledge is the one with 

the greatest entropy (Jaynes, 1957).  

It can be assumed that a similar 

argument would follow if there were multiple 

types of indirect delays.  The single estimate 

distribution would again leave a unchanged 

and m and b would be increased, resulting in a 

unimodal Beta Distribution.  The alternative is 

to employ multivariate statistics of dimensions 

q+1 where q is the number of indirect delay 

types.  The distribution for direct delays and 

each indirect delay are estimated separately, 

leading to a marginal distribution with an 

entropy that can be compared to the single 

estimate distribution, or any other estimation 

approach that might have been employed.  

While the computational burden with multiple 

types of indirect delays significantly increases 

over the simpler bivariate case with one type 

of delay, chain rules for multivariate statistics 

and multivariate entropy are available for an 

analytical approach, and software is available 

to derive the marginal distribution with 

simulation.  From the perspective of the 

estimator, the estimation process would be 

more straightforward and much less subjective 

by making separate estimates for each delay 

type.  It lets the mathematics or simulation 

determine activity time distributions, reducing 

the added guesswork from a single estimate 

distribution.     

This study also proposes a procedure 

for determining significant differences 

between two entropies based on a 

transformation of each into a discrete Uniform 

Distribution with equivalent entropy.  

Differences in the number of events captured 

by the ranges of these distributions are 

determined, and a ratio is developed based on 
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the percent of lost events if the low entropy 

unimodal distribution was employed over the 

higher entropy multimodal distribution.  These 

lost events can parallel the significance of lost 

lottery tickets on the fairness of a lottery.     

The literature on estimation of 

distributions is quite extensive in that it spans 

several disciplines.  However, only a few 

studies recognize the impact of indirect delays 

on project network modeling and even fewer 

propose remedies.  Several studies in project 

management have found this problematic.  

Empirical findings in (Morgenshtern, Raz and 

Dvir, 2007) suggested that project managers 

gave little attention to indirect delays.  

Atkinson, Crawford and Ward (2006) argued 

that uncertainty in project management was 

not given adequate consideration by 

practitioners, suggesting that indirect delays 

were ignored, leading to erroneous inferences 

from completion time distributions that 

understated the uncertainty of the project.  

Steele and Huber (2004) found that many 

established project management techniques 

assume the use of a common set of 

distributions (e.g., Beta; Normal; Triangular 

Distributions), indicating no special 

accommodation for indirect delays.  They 

argued that when the data was not consistent 

with the common set of distributions, the 

usefulness of project management modeling 

was compromised.   

Some studies in project management 

attempt to address the problems cited above by 

drawing on work in other disciplines that focus 

on outliers, which involve distributions with 

outlying or nonroutine states with likelihoods 

of sufficient magnitude that should not be 

ignored.  Grant, Cashman and Christenson 

(1999) documented the outlier phenomena in a 

real world project that had experienced a four 

year delay since it failed to accommodate 

outliers which could be classified as indirect 

delays.  Two studies related to project 

management offered methods to develop 

distributions that were more robust in their 

ability to capture outliers.  Steel and Huber 

(2004) employed Tukey’s methods of 

exploratory data analysis (EDA).  However, 

the burden of estimating data can be extensive 

for large projects with numerous activities.  

Hahn (2008) developed a methodology based 

on “mixture distributions.”  Such distributions 

are designed to improve the flexibility and 

accuracy of data fitting by combining two 

distributions which improve the chance of 

capturing outliers.  Hahn’s study focused on 

project management and PERT.  His remedy 

was to combine the typical PERT Beta 

Distribution with the continuous Uniform 

Distribution, employing a mixture parameter 

that ranged from 0 (for a pure continuous 

Uniform Distribution) to 1 (for a pure Beta 

Distribution).  However, this burdens the 

estimator when selecting among a large 

number of distributions shaped by the mixture 

parameter, which may not necessarily lead to 

the estimator’s vision of a representative 

activity time distribution. 

The sections that follow include 

discussions of methodology and an example to 

illustrate the concepts proposed in this study.   

 

II.  GENERAL PROPERTIES OF THE 

ENTROPY FUNCTION 

 

Consider the random variable R with 

distribution function P(R) described by 

probability set  

 

      P(R) = {p(r1), p(r2),… p(rJ)  | 0≤ p(rj)≤ 1;  

                   R={r1,r2,…rJ}; j=1,2, . . .J; 

                   ∑ p(rj)=1}.                                 (1) 
                       rjєR 

 

The generalized form of the discrete entropy 

function of R is (Shannon, 1948) 

 

           H(R) = -   p(rj) log p(rj),                (2)                                           

                           rjєR  
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where in this study the logarithm  can be set to 

any base.  Integral expressions of the entropy 

function exist for continuous distributions, but 

are not applicable in typical project simulation 

studies using discrete event simulation 

software.  Note that continuous distributions in 

discrete event simulation are converted to their 

discrete approximations.   

Several key mathematical properties 

that follow support the use of the entropy 

function as a continuous measure of 

uncertainty for applications in this study.  

These properties can be found in numerous 

books and articles on information theory and 

statistics (e.g., Reza, 1961; Jelinek, 1968; 

Hays and Winkler, 1975; Jones, 1979; 

Cosgrove, 2010):     

 

1. The logarithm of zero is undefined, but 

the entropy function in (2) is finite 

since  
 

         limit [p(rj) log p(rj)] = 0.          (3)                                                                 
           p(rj)→0    
                                                       

2. H(R) is based on probability sets and is 

therefore distribution free.  It can be 

determined from (2) for any given 

probability set for nominal/categorical, 

ordinal, or metric data. 

3. The range of H(R) increases 

continuously as a measure of 

uncertainty from Min[H(R)] = 0 [for 

complete certainty if there exists a 

single variate rj such that p(rj) =1], to 

Max[H(R)] = log J [for maximum 

uncertainty where all states are 

equiprobable with p(rj) =1/J for all 

values of j, where p(rj) ≠ 0]. 

4. While the index j assigns a single index 

to all probabilities p(rj)єP(R), there are 

no restrictions on p(rj) in terms of 

representing univariate or multivariate 

probabilities.   

 

Equivalent entropies convey the same 

level of uncertainty whether they are derived 

from univariate or multivariate sources, or 

from distributions with different shapes.  

However, entropy is technically a 

dimensionless measure which at best can 

provide an ordinal scale for ranking the 

uncertainty of different stochastic processes.  

Measuring significant differences with entropy 

using a transformation will be discussed later 

in this study. 

 

III. DISTRIBUTION FUNCTIONS FOR 

DIRECT AND INDIRECT DELAYS 

 

Let I constants in set K represent I 

indirect delays such that K= {ki|i=1,2,3,...I; 

k1=0; k1<k2<k3,…ki-1<ki,…kI-1<kI}.  Consider 

the discrete joint distribution function P(Y,X) 

with variates yj corresponding to direct and 

indirect delays and xi to indirect delays, such 

that Y={yj|j=1,2,3,....J} and X={xi|i=1,2,3,...I} 

with underlying marginal distribution 

functions P(Y) and P(X).  Now let PD(Y+ ki|xi) 

be the ith conditional distribution estimated as 

the ith direct delay.  For I≥i≥2, the 

distributions for direct delays are shifted ki 

time units on the time axis to account for 

indirect delays. This permits P(Y|xi) 

conditional distributions (for all values of i) to 

capture both direct and indirect time delays. 

[Note that there is no time shift at i=1, where 

k1=0 such that P(Y|x1)=PD(Y|x1) are 

distributions representing direct delays only.]  

From bivariate statistics, the marginal 

distribution of P(Y) follows from 
 

         p(yj) =  p(xi) p
D(yj + ki|xi)  

                    xiєX                                   
 

                 =  p(xi) p(yj|xi).                        (4)                                                                       

                    xiєX  
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Section VI will present an example of a 

network representation based on (4) which 

generates the activity time distribution from 

simulation.   

The estimates for direct delays may or 

may not have the same shape for all i.  If they 

do, only one estimate for a single direct delay 

is necessary since the others are simply 

distributions of the same shape that are shifted 

by ki for i≥2.  The estimate for indirect delays 

determines P(X) and is taken as independent 

and separate from the estimate for direct 

delays. Expression (4) also shows the 

probabilities of P(X) as the weights for a 

weighted average of the conditional 

distributions which include direct and indirect 

delays.  The interpretation of (4) as a weighted 

average lends support for its use in 

determining P(Y) as the desired activity time 

distribution that captures both direct and 

indirect delays. 

 

IV. ENTROPY FUNCTIONS FOR 

DIRECT AND INDIRECT DELAYS 

 

The expressions in this section are well 

established in information theory (e.g., Jones, 

1979; Jelinek, 1968) and are presented for 

their applicability to this study. 

The univariate marginal entropy 

functions H(Y) and H(X) are given by    

                                                

           H(Y) = -   p(yj) log p(yj),              (5) 

                           yjєY 

                                                            

           H(X) = -   p(xi) log p(xi).              (6)                                             

                           xiєX                             
 

The conditional entropy function of Y given 

variate xi is 

       H(Y|xi) = -   p(yj|xi) log p(yj|xi).       (7)                                           

                               yjєY 
                               

The above expressions can now be 

used to determine the following: 

 

1. HE(Y): Entropy of the distribution 

PE(Y), the estimator’s activity time 

distribution from lumping together 

direct and indirect delays in the 

estimate of a single distribution.                 

Its entropy follows from (5) by 

substituting HE(Y) for H(Y) and pE(yj) 

for p(yj).  

2. H(Y): The marginal entropy of the 

marginal distribution P(Y) from 

P(Y,X) as specified above in (5).  

3. H(X): The marginal entropy of the 

marginal distribution P(X) from 

P(Y,X) as specified above in (6).    

4. H(Y|xi): Entropy of the ith conditional 

distribution P(Y|xi) as specified above 

in (7). 

 

V.    TRANSFORMATION FOR  

        MEASURING SIGNIFICANT   

        DIFFERENCES 

 

Fig. 1 shows two discrete Uniform 

Distributions consisting of n and m states with 

entropies H(N) for P(N) and HE(M) for PE(M), 

where     H(N) =  log n    and    HE(M) =  log m 

(Wikipedia, 2014).  If H(N)=H(Y) and 

HE(M)=HE(Y) with HE(M)<H(N) and m<n, 

then H(Y) is a better estimate than HE(Y) for 

an activity time distribution according the 

Principle of Maximum Entropy.   
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            FIGURE 1. EQUIVALENT ENTROPY DISTRIBUTIONS FOR P(Y) AND PE(Y) 

 
 

It now follows that  

 

                     log n = H(Y)                             (8) 

                                            

with  

 

                   n = log-1[H(Y)],                          (9) 

                                                            

and     

 

                    log m = HE(Y)                        (10)  

                                           

with   

 

                   m = log-1[HE(Y)].                 (11)                                                  
 

 

The entropies in (8) and (10) have been 

transformed using the inverse logarithm in (9) 

and (11) to an equivalent number of events or 

states of a discrete Uniform Distribution.  If  

                                                         

        DIFF = n – m,                         (12)                                              

 

then DIFF represents the number of states or 

events lost in a Uniform Distribution when 

using PE(Y) as the activity time distribution 

rather than P(Y).   

An interpretation of (12) follows from 

a simple fair lottery game with each ticket 

corresponding to a state of a discrete uniform 

distribution.  If n tickets were sold but m 

where placed in the drum, then DIFF tickets 

were lost.  These lost tickets increase chances 

of winning for holders of the remaining 

tickets.  The question to be addressed is 

whether enough tickets were lost with a 

likelihood to significantly alter the outcome of 

the lottery.  Twenty lost tickets from 1,000,000 

sold are unlikely to make a significant 

difference.  However, 20 lost tickets from 100 

sold are likely to be quite significant.  The 

difference in (12) represents the lost 

uncertainty or entropy when using PE(Y) as the 

activity time distribution compared to using 

P(Y).  This lost uncertainty would most likely 

manifest itself by understating the true 

variance of the activity time distribution.   

The following ratio is proposed to 

determine significant difference as a percent of 

lost states or events: 

                                       

   SDR = (100)(n – m)/n = (100)(DIFF)/n.    (13)                                       

 
 

Expression (13) will be applied to the example 

in the next section. 

   

VI.    EXAMPLE     

 

The example employs a simple 

simulation to generate P(Y) as the appropriate 

estimate for an activity time distribution.  P(Y) 

is the distribution of interest given that it 

captures the probabilistic behavior of both 

direct and indirect delays as the marginal 

distribution of a bivariate system.  The 

simulation model is shown in Fig. 2 and uses 

the GERT/VERT AOA project network 



William J. Cosgrove 
Generating Project Network Simulation Activity Time Distributions Subject to Nonproject Delays 

 

Journal of Supply Chain and Operations Management, Volume 12, Number 2, May 2014 

 

74 

framework (Moore and Clayton, 1976; 

Moeller and  Digman, 1981),  which  unlike 

PERT provides a framework that can 

accommodate stochastic branching. 

 

              

                         FIGURE 2. SIMULATION MODEL GENERATING P(Y) 

 

 

 

    

            FIGURE 3. SIMULATION OUTPUT AND CORRESPONDING ENTROPIES  
 



William J. Cosgrove 
Generating Project Network Simulation Activity Time Distributions Subject to Nonproject Delays 

 

Journal of Supply Chain and Operations Management, Volume 12, Number 2, May 2014 

 

75 

The model shows three Beta 

Distributions in the typical PERT format of 

β[a,m,b].  The distribution for the top branch 

captures only direct delays (k1=0).  The middle 

and bottom branches are adjusted to capture 

both direct and indirect delays.  These 

distributions have the same shape as the 

distribution on the top branch, but their 

respective values of a, m, and b are shifted to 

capture indirect delays of 5 and 10 time units 

(k2=5 and k3=10). The simulation converts 

these continuous Beta Distributions into 

discrete approximations.  The results of these 

conversions, with the time shifts to 

accommodate indirect delays, are shown in 

Fig. 3 as the three discrete conditional 

distributions in the middle of the figure.  

It is evident by observation of Fig. 3 

that the distribution PE(Y) significantly differs 

from P(Y), the latter of which is the 

completion time distribution from the 

simulation.  The multimodal properties of 

P(Y) are a more realistic representation of the 

behavior of combined direct and indirect 

delays.  Note that the entropies in the figure 

follow from expressions in Section IV.   

Since H(Y) > HE(Y), P(Y) is the 

preferred estimate for the activity time 

distribution according to the Principle of 

Maximum Entropy.  Referring to the lottery 

analogy, it follows from (13) that use of PE(Y) 

over P(Y) reflects a loss of 18% of the lottery 

tickets making such a lottery unfair, and 

clearly indicating that the distributions are 

significantly different. 

There are a few technical comments 

related to this example.  All logarithms were 

arbitrarily taken to the base 2.  Simulations 

were performed with the Arena simulation 

package (Kelton, Sadowski and Swets, 2010) 

with at least 20,000 replications on the model 

in Fig. 2 for each run.  This gives an error 

within ± .01 probability on the cumulative 

distribution with a confidence level of .95 

when employing the Kolmogorov-Smirnov 

procedure as outlined in (Van Slyke, 1966).   

Arena is similar to most simulation packages 

in providing as an input the standard form of 

the Beta Distribution which ranges from [0,1] 

and requires two shaping parameters.  After 

estimating a, m, and b for the version of the 

Beta Distribution employed in PERT project 

networks, a transformation is required to 

rescale the standard Beta Distribution to 

accommodate a range of [a,b].  The 

transformation also requires a calculation of 

two shaping parameters in terms of a, m, and 

b.  This study considered two approaches 

(Vose, 2000; Davis, 2008) for calculating the 

shaping parameters.  Eight simulations with 

20,000 replications of the continuous Beta 

Distributions for PE(Y) and P(Y|xi) for i=1,2,3 

were performed with shaping parameters from 

both approaches, giving the simulation output 

as discrete approximations for the four 

distributions from the top as shown in Fig. 3.  

The Davis approach was selected because it 

gave better estimates of the mode m for all 

four discrete approximations of the Beta 

Distributions.     

Obtaining P(Y) and discrete entropy 

measures using the GERT/VERT framework 

in Fig. 2 is straightforward.  Additional effort 

is required when using a PERT framework 

which does not accommodate stochastic 

branching.  The conditional discrete 

distributions in Fig. 3 which were needed to 

calculate the conditional entropies from (7) 

can be generated by simulation using the 

PERT framework.  They can be generated 

from three simple PERT simulation models 

with each model consisting of a branch of the 

network in Fig. 2.  It then follows that P(Y) is 

determined directly from (4).   

In our example, the conditional 

distributions in Fig. 3 have the same shape.  

Only one PERT simulation would be 

necessary since the other two distributions 

require shifts of 5 and 10 time units (i.e.,  a, m, 

and b for k1=0 are all shifted by 5 time units 

when k2=5 and by 10 time units when k3=10).      
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Unlike PERT networks, the use of the 

GERT/VERT network framework completely 

avoids the need for calculating P(Y) or even 

referring to it.  P(Y) is captured within the 

network through stochastic branching.  

However, the number of branches and size of 

the network could increase considerably if 

there are a large number of activities subject to 

indirect delays.  Separate determinations of 

activity time distributions using networks 

similar to Fig. 2 would reduce the number the 

stochastic branches, which reduces the size of 

the GERT/VERT project network.     

 

VII.    CONCLUSION       

 

This study has proposed tools for 

improving estimations of activity time 

distributions by proposing methodology that 

permits practitioners to better accommodate 

indirect delays that are not directly associated 

with direct delays, but have sufficient 

likelihoods to be a threat in causing significant 

project delays if not properly taken into 

account.  Given the lack of literature in project 

management on indirect delays, and the wealth 

of literature in other disciplines that consider 

nonroutine delays (e.g., outlier literature), 

there is an opportunity to transfer methods 

from such literature to applications in project 

management or to develop new methods to 

address the problem.  This study is an example 

of the latter by recognizing the potential of 

entropy to measure uncertainty and to provide 

a criterion to compare the effectiveness of 

different approaches to distribution estimation.  

While this study considered only one type of 

indirect delay and treated it within a bivariate 

framework, this avenue of research can be 

extended to multiple types of indirect delays 

involving multivariate frameworks with 

numerous random variables.   

The project management literature 

cited in this study was concerned about the 

consequences that follow from poor estimation 

leading to understating project uncertainty.  

However, all available information should be 

inputted into a project without understating or 

overstating the uncertainty of activity time 

distributions.  The example in this study found 

that the multimodal marginal distribution P(Y) 

was the better candidate for the activity time 

distribution than the single estimate 

distribution of unimodal PE(Y), based on the 

Principal of Maximum Entropy.  What if 

PE(Y) had the greater entropy?  Generally, 

cases where outliers such as indirect delays are 

not fully captured in a distribution are likely to 

show fewer modes than cases that capture 

them, and the Principle of Maximum Entropy 

is an appropriate criterion in selecting the best 

estimate.  Distributions with more modes of 

similar amplitude tend to take on a flatter 

shape, making them better approximations of 

the discrete Uniform Distributions than 

distributions with fewer modes. (For a given 

range, the Uniform Distribution is the 

maximum entropy distribution.)  However, if 

PE(Y) exhibits the greater entropy, perhaps the 

lumping of an estimate with direct and indirect 

delays within a single distribution would seem 

more difficult than two separate estimates, 

leading an estimator to make a more 

conservative single distribution estimate.  If 

this can be established as the reason, then the 

focus should shift away from a criterion based 

on the Principle of Maximum Entropy to 

whether the estimator has more confidence in 

making separate estimates over the single 

distribution estimate.  Separate estimates 

should be less burdensome to the estimator.  

The heavy lifting is done by multivariate 

statistics which introduces more mathematics 

and less subjectivity into the process than the 

single distribution estimate.     
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