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The cycle time to manufacture parts for the semiconductor industry strongly hinders the high 

productivity of most companies. At times, to be able to contend with the lengthy production cycle 

time, companies make unnecessary capital expenditures and inventory allocation, which could affect 

the asset utilization during slow times.  This paper discusses the effects and the impact of yield 

prediction on the productivity and efficiency of semiconductor manufacturing processes.  As with 

other industries, the semiconductor industry goes through cycles (Lara Chamness, 2012).  During 

critical economic situations, companies that have good yield prediction systems in place have more 

chances of getting through the crisis with only minor dips in its bottom line (Wu, Erkoc, & Karabuk, 

2005).  Yield prediction is applicable to various types of semiconductor products, whether 

commodities or high-margin parts.  The use of yield prediction models will also have managerial 

implications on the areas of operations planning, marketing, and finance. 
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I. INTRODUCTION AND OVERVIEW 

OF THE SEMICONDUCTOR INDUSTRY 

The semiconductor industry, just like any 

other industry, experiences boom-bust cycles 

every so often.  The last two decades proved to 

be tumultuous for the whole semiconductor 

industry, as evidenced by the cyclical trends.  

The industry experienced tremendous growth 

with the burgeoning of the Internet in the early 

90’s as shown in Fig. 1 (Global Semiconductor 

Market Forecast to 2015, 2012) (Gross & Hester, 

2002).  Although the industry still went through 

the normal cyclical behavior of the market, the 

trend of the worldwide revenues is going up, and 

this up-trend growth continued until the mid-

2000’s. The industry experienced huge cyclical 

dips and during slow years, decline in revenues 

accelerated so fast and this caught most the 

industry players unprepared for the sudden drop 

in market demand.  

 

For instance, in 2009, when production 

volumes and capacity utilization of 

semiconductor plants plunged drastically, shown 

in Fig. 2 (SICAS Annual Capacity Report, 2010), 

several companies did not survive and had to 

close down, or sell out to competitors and other 

bigger companies.  Most companies braced for 

the worst, revenues and volumes slid down and 

earnings dipped down to the negatives. Even 

industry giants were not spared.   

The huge market expansion for the 

semiconductor industry during the last decade 

was mainly propelled by the market’s appetite 

for mobile devices and telecommunications 

paraphernalia.  The world suddenly shrunk in 

size and it became easier to reach anybody even 

from across continents.  Smartphones, tablets and 

ultraportable devices became a necessity for most 

consumers due to their insatiable need to be able



Makani-Lim, Betty Dee and Lim, Felix Chan 

Yield Prediction As a Factor in Productivity Management of Semiconductor Process 

Journal of Supply Chain and Operations Management, Volume 10, Number 2, September 2012 

126 

 

FIGURE 1: GLOBAL SEMICONDUCTOR REVENUES (1976 – 2011) 

 
 

FIGURE 2: TOTAL SEMICONDUCTORS CAPACITY (2007 – 2009)

 
Source: SICAS Statistics Report, 4Q, 2009 
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to “connect” with the world almost at all times 

(Global Semiconductor Market Forecast to 2015, 

2012).  Because of this huge demand from the 

market, a huge number of software companies, 

internet distribution, service providers, and 

telecommunications companies deemed it 

essential to invest huge sums of capital to build 

and expand the infrastructure, which would in 

turn support the internet and mobile 

communications (Paccial, 2011).  Setting up this 

infrastructure requires millions and millions of 

parts (Hong, 2011), which were in turn,  

produced by the semiconductor industry.  Most 

semiconductor companies enjoyed 

unprecedented revenues and earnings (Gross & 

Hester, 2002), since these companies form the 

backbone of the new economy. 

During the boom years, the production 

capacity of semiconductor companies and their 

subcontractors are fully utilized.  Due to the 

nature of the production process (Mönch, Fowler, 

Dauzère-pérès, Mason, & Rose, 2011), the 

manufacturing schedule follows the plan set 

according to the orders of the corporate 

customer.  Seldom are special orders given 

priority.  Even if the customer wants some parts 

delivered faster, the customer cannot do anything 

but to wait (Groneveld, 2011).   It is the sellers, 

the semiconductor companies, who dictate the 

terms of delivery. In most cases, delays in 

delivery cannot be helped because of the very 

nature of the production process.  Due to this 

foreseen delay in delivery, customers usually 

order more than what they need so that they 

would have enough stocks in their inventory 

(Groneveld, 2011). This practice is usually done 

so that just in case the customers would have 

additional orders, they do not have to wait for 

months before they get their parts.  

Sometimes, when the customer badly 

needs a part and the existing supplier cannot 

accommodate the order, the customer would tend 

to look for another vendor who is able to supply 

the required parts at the fastest possible time.  

However, transferring to another vendor is not a 

guarantee of faster and on-time deliveries (Hsu & 

Sha, 2007), because of the limitations of the 

production process.  Also, if the alternate vendor 

is already utilizing its full production capacity, it 

will be very difficult for the vendor to entertain 

additional orders.  This situation is true when 

business is good, demand is up, and most 

facilities of semiconductor companies are fully 

loaded. 

Meanwhile, when bookings are low and 

business is sluggish, semiconductor companies 

are very aggressive in scouring for orders.  The 

tables are now turned, the market becoming a 

buyer’s market.  Corporate customers now have 

the luxury to choose which vendor to place their 

orders from.  Companies who are able to deliver 

their parts the fastest usually gets the most 

orders.  During lean times, corporate customers 

do not follow the normal procedure of advanced 

bookings and ordering lead times anymore 

(Groneveld, 2011). According to Hong and 

Groneveld, customers rarely order to stock for 

inventory and order only on “as needed” basis.  

Thus, one of the keys to surviving during the lean 

times is to somehow try to shorten the production 

cycle times and improve the delivery time to the 

customer (Christie & Wu, 2002). 

The main purpose of this paper is to 

discuss the challenges of managing the 

semiconductor process to fulfill various product 

demands from clients. A case study using an 

actual production process of a particular 

semiconductor part, the Junction Field Effect 

Transistors (JFET) is used to illustrate the 

significance of having an effective yield 

prediction system in place. JFET products 

manufactured using a diffusion process to define 

the channel path has variable process yields, thus 

it was used as an example in this paper. 

 

II. THE PRODUCTION PROCESS 

 

There are various types of parts being 

produced by semiconductor companies but most 

of them follow this standard production process 

as illustrated in Fig. 3: 
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FIGURE 3: SEMICONDUCTOR TYPICAL MANUFACTURING PROCESS 

 

The length of the production process 

varies depending on the type of product, and 

normally, the bottleneck of the production 

process is in the fabrication and sort testing of 

the wafers (Mönch, Fowler, Dauzère-pérès, 

Mason, & Rose, 2011).  This process is normally 

called in the industry as the “front-end” 

production process.  Some products take as much 

as twelve (12) weeks before the fabrication 

process is done.  After the fabrication of the 

wafers, they have to go through wafer sorting 

before they can be assembled and tested.  The 

products can only be shipped to the customer 

after it has passed through testing. 

The total cycle time for a typical part, 

from fabrication to testing, is about two to four 

months (Hong, 2011). This means that from the 

time the customer places his order, it would take 

a little more than three to four months for the 

semiconductor company to be able to deliver the 

finished products to the customer.  This lengthy 

production process is the reason why customer 

bookings and orders have to be made in advance.  

It is standard industry practice to get customer 

bookings and orders in about three to six months 

in advance (Hsu & Sha, 2007).  This system 

ensures that the semiconductor companies have  

enough time to plan out their production and 

logistics system.  When there is excess capacity, 

some companies employ parallel loading in their 

facilities just to be able to shorten the cycle time 

(Huh, Roundy, & Cakanyidirim, 2006).  

However, if most of the plant equipment is 

running at full capacity, outsourcing or capital 

spending is usually the norm.  Any one of these  

 

 

two alternatives would translate to increased 

material and production costs. 

In the semiconductor industry, overall 

productivity is defined by three major factors: 

quality, costs of production, and speed, 

illustrated in Fig. 4.  Efficient plant operations 

will lead to total lower manufacturing costs.  

Although the costs of quality would entail higher 

initial capital investment, its long-term effects on 

cost are well worth it (Bridwell & Richard, 

1998).  On the marketing side, the faster a 

company can bring its products to the customers, 

the higher the satisfaction.  Although some 

customers put a lot of importance on faster 

delivery, speed to market is not the only 

consideration.  The quality of the product also 

plays a part.  The combination of speed and 

quality is what counts for the customer. 

 

III. MARKETING AND FINANCE 

ISSUES 

 

Semiconductor companies mostly sell to 

the business market, e.g., resellers and 

distributors (Groneveld, 2011).  Parts produced 

by semiconductor companies are also used 

primarily as OEM (original equipment 

manufacturer) parts in consumer goods.  When 

the demand for a certain consumer electronic 

product is forecasted, the companies that 

manufacture these consumer products, in turn, 

will program their orders from semiconductor 

companies.  When the end-consumer demand 

suddenly shoots up, and the inventories of the 

companies starts to get depleted, these same 

companies will now demand “additional”  
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FIGURE 4: FACTORS AFFECTING PRODUCTIVITY 

 
 

deliveries from the semiconductor companies.  

Herein lies the problem. 

The lengthy cycle time of the production 

process limits the ability of the semiconductor 

companies to react faster to unexpected changes 

in customer orders (Tierney, et al., 2012).  By the 

time the semiconductor companies are able to 

deliver, the market demand has already waned.  

The result is lost revenue opportunity both for the 

semiconductor and the customer companies. 

Sometimes, even if the semiconductor 

companies are able to deliver the parts, these are 

rejected because of poor quality.  These rejected 

parts go through failure analysis and if these 

parts can be reworked, it goes through the 

production process for the necessary corrections 

(Sha & Hsu, 2004) so that it can be shipped back 

to the client.  Not only is this system expensive, 

but it also wastes too much resource.  

Furthermore, incidents like this tend to make 

customers very dissatisfied with the company. 

 

IV. PRODUCTION PLANNING  

  PROCESS  

 

 

 

Upon receiving the confirmation of 

orders from the customers, production and 

business planners use a projected process yield to 

compute back the number of wafer starts needed 

to support a certain order quantity.  This 

projected yield helps the production department 

determine the quantity of wafers that needs to be 

fabricated to fulfill a specified ordered quantity.  

These process yields are obtained from the 

different factory locations around the world that 

would be involved in the processing of the 

specific product ordered (Geng, 2009). 

Process variations in any part of the 

production process would alter the projected 

output and would greatly affect the delivery 

commitments.  To resolve this, process controls 

are put in place to detect any shift in the process 

parameters.  Additional yield guard bands are 

also added in yield forecasting to buffer 

additional loss due to unforeseen and unexpected 

process variability. 

New IC (Integrated Circuit) devices are 

becoming more complex as technology advances 

through the years.  The cell geometry shrinks at a 

rate matching Moore’s Law, as shown in Fig. 5, 

wherein the number of transistors that can be 
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integrated into a given area would double every 

18 months. 

The complexities of these new IC’s result 

to new and more subtle failure mechanisms that 

are currently being identified.  Existing test 

equipment has to be updated to keep up with the 

new generation of IC’s that are being produced.  

It is becoming more and more difficult to detect 

product failures at an early stage. More often 

than not, before a device failure is detected, the 

product has already reached its few final stages.  

The fabrication processes of these sub-micron 

level geometry devices require more stringent 

controls to ensure the quality of the products that 

come out. 

The existing method currently being used 

in the industry is to sample test some wafers at 

the wafer sorting facility and to identify the types 

of devices that can be built from it. This method 

provides a sort of checkpoint to determine if the 

wafers can still support the forecasted ordered 

quantity for the device.  If not, then additional 

wafer loading will have to be started at this early 

stage. 

 

FIGURE 5:  MOORE'S LAW 

 
 

V. THE IMPORTANCE OF YIELD 

PREDICTION: A CASE STUDY 

 

Some product types already have defined 

yield prediction procedures (Chung & Huang, 

2002).  This makes the backend process for these 

products a little easier. Yield production for these 

products follow a standard set of procedures, 

which would reliably predict the yield based on 

identified key parameters.  However, there are 

still a number of other devices that require more 

intricate methods of yield prediction.  This is due 

to the interaction between the different process 

and device parameters.  The very nature of these 

products makes yield prediction much more 

difficult and complicated.  Although quantitative 

in nature, the yield prediction methods most 

often used for these types of products rely mostly 

on the experiences of the people analyzing the 

data (Garcia, 2011).  

To address customer delivery and quality 

concerns, it is an accepted industry practice to 

over-stock on wafers and over-produce the 

required parts (Hong, 2011) (Garcia, 2011). This 

practice enables semiconductor companies to 

ship their parts faster whenever a corporate 

customer decides to order extra units.  If the 

delivered devices fail, then there will always be 

more finished good units left in inventory ready 

for shipment.  This practice of overstocking 

wafers is a good strategy for the sales thrusts of 

the company, because products can be readily 
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delivered in cases where the yield prediction is 

inaccurate. However, this practice puts a huge 

strain on both the financial resources and 

production capacity of the company (Scott & 

Pisa, 1997), especially if the stocked parts are not 

ordered or sold by year-end.  Unsold products are 

usually scrapped after being kept for a defined 

period of time.   

Unreliable methods of identifying wafers 

often result to extra long throughput times in 

processing the semiconductor devices.  

Companies also tend to incur huge inventories 

for assembled and tested devices that have no 

orders.  Million dollars worth of this binned 

inventory are scrapped annually. This is an area 

where good yield prediction is needed.   

To highlight the importance of yield 

prediction, an illustration of a specific product 

and its yield is used.  Table 1 shows an actual 

yield example for the Junction Field Effect 

Transistor (JFET) product, wherein lot number 

BBN35C8 was erroneously predicted to have a 

25% sub-product or binsplit yield using wafer 

level process/device parameter data.  However, 

after the wafer lot went through the production 

process, the actual sub-product yield that came 

out was only 1.95%. 

 

 

TABLE 1: JFET BINSPLIT PERFORMANCE 

 
 

Table 2 presents an example of a 

customer order and quantity requirement.  It 

shows how an erroneous yield projection results 

to a huge production problem.  For instance, if a 

customer ordered 100,000 units of product X, 

with a binsplit yield prediction of 25%, the wafer 

start quantity required would be 600,000 units. 

With the new actual yield of 1.95%, the required 

wafer start quantity now shoots up to 7.4 million 

units.  Immediately, there is a difference of 6.8 

million units for wafer starts.  The initial wafer 

start of 600,000 units produced only a measly 

8,190 good units.  An additional 6.8 million units 

would have to be produced by the fabrication 

plant to be able to fulfill the customer order of 

100,000 units.   

 

TABLE 2: WAFER START QUANTITY FOR PRODUCT X 

 
 

This error in yield prediction means that 

the fabrication plant has to produce more wafers 

to fulfill the unsupported order requirements of 

the customer.  With a gestation period of about 8 

to 12 weeks, by the time the final product comes 

out of the factory, the customer might not require 

it anymore, or worse, could have ordered the 

parts from a competitor. 

The impact on operations is much worse.  

This development is similar to pressing the panic 

button on the production floor.  The pressure is 

for the fabrication plant to come up with the 

required number of wafers as soon as possible to 

salvage the situation.  All existing products 

already in process would be de-prioritized to fast 

track the new wafer lot across the production 

process.  This will cause undue stress on the 

whole production system and delays in the 

deliveries of products that were temporarily 

taken off the production floor. 
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There have been many types of analysis 

tools developed to correlate fabrication / wafer 

level data to the device-level performance. 

However, majority of the existing yield 

prediction tools used on wafer level data focus 

mainly on statistical analyses based on 

minima/maxima values, the standard deviation, 

and percentile distribution of the parameters. 

There have been few studies made on the 

parameter interaction of these test data.  

Interactions between the different process 

parameters and the difficulty in getting a direct 

correlation between them have made this 

difficult.  Very few known methods include 

parameter interactions in their analyses.  These 

parameter interactions, together with the other 

statistical data would greatly affect the eventual 

yield of the device.  

 

5.1  The Monte Carlo Simulation Method as 

Applied to Yield Prediction 

 

There are different yield simulation tools 

available.  For this study, the Monte Carlo 

simulation approach as applied to yield 

prediction is used. Wafer level data are used in 

these simulations to predict the resulting device 

performance at the back-end final test.  This tool 

can also be used by both engineering and 

planning groups in their yield and production 

capacity planning and analysis.  

Monte Carlo is a statistical simulation 

based on numerical method that allows the 

drawing of a value of a random variable X from a 

population with known probability density 

distribution, p(x) in the interval [a,b] (Co, Lim, & 

Caluyo, 2001). The values of Y can be generated 

by the use of pseudo-random number generators 

and is distributed in the interval [0,1].  Equation 

(1) below shows the relationship between X and 

Y: 

              X 

Y = ∫      p(x)  dx       

      (1) 

                      a 

For the Monte Carlo method to apply, 

each variable or parameter to be studied should 

have a probability density function. Since the 

probability density function p(x) of the 

population are not generally known, the 

probability density function of the population can 

be approximated by calculating the probability 

density function of the samples. These 

probability density functions depend on the 

process and therefore vary from device to device 

and from one parameter to another.  

In order to do the simulations, there 

should be a way by which a value of X can be 

obtained for each corresponding value of Y. 

Since it is not possible to directly solve for X for 

each value of Y from equation (1), the 

cumulative probability distribution is generated 

from the probability density function indirectly 

graphically. Obtaining the value of X for each 

value of Y becomes a matter of table look-up 

combined with an interpolation technique or 

using a simulation tool.  The drawing of these 

values of X, can be simulated as many number of 

times as one wishes. In general, as the number of 

simulations increases, the distribution of X 

approaches the actual p(x). 

 

5.2  Calculating the Yield of a JFET transistor 

using Simulation  

 

Table 3 shows  an example of an actual 

JFET transistor datasheet parameters.  

 

TABLE 3: JFET TRANSISTOR PARAMETERS 
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Table 4 shows the e-test (electrical test) 

parameter distribution for a given JFET transistor 

wafer lot. This given lot yielded 48.48% in actual 

production for the specified parameter value in 

Table 3.  

 

TABLE 4: TRANSISTOR E-TEST DATA 

 
 

Yield is equal to the ratio of the number 

of good working devices to the number of 

devices obtained from a production lot. The yield 

of a device depends upon a certain number of 

parameters, all of which must be within 

acceptable limits for the device to function 

properly. For a device to be considered good, all 

of the parameters should be within the minimum 

and maximum acceptable limits. 

Each simulation involves the generation 

of random values of the five parameters that 

affect the yield of the transistor device. This is 

done by generating 5 random numbers uniformly 

distributed between 0 and 1. Each of these 

numbers represents the random variable Y, 

which is used to generate the corresponding 

values of the five parameters. If all of the 5 

parameters are within acceptable limits, the 

device is considered to be acceptable. Otherwise, 

the device is considered non-working. The 

simulation is repeated N number of times. Yield 

is calculated as the ratio of the total number of 

acceptable devices to the total number of 

simulations, N. A MATLAB program was used 

for the simulations. 

Fig. 6 and Fig. 7 show two examples of 

the relative frequency distributions from 

Parameter 1 and Parameter 2. The line represents 

the actual values while the circles represent 

points that were generated using simulation. It 

can be seen in Fig. 6 and Fig. 7 that the 

distribution of the simulated points, represented 

by the circles, closely resembles the actual 

frequency distributions of the raw data, 

represented by the line curve.  

Fig. 8 and Fig. 9 show the corresponding 

cumulative probability distributions of the two 

based on sampled data values. The cumulative 

distribution curves are used to calculate values of 

each parameter, represented by the random 

variable, X, from corresponding values of 

random variable Y uniformly distributed between  

the interval [0,1]. 

Table 5 shows the comparison between 

the mean and standard deviations of the actual 

and simulated values of the transistor parameters. 

It can be seen that for most of the parameters, the 

simulated and actual data are quite close to each 

other. Any big discrepancy between actual and 

simulated results can be explained by the fact 

that the raw data that were collected for the 

transistor have quite a number of data values that 

are either too big or too small which have 

drastically changed the statistics of the data.  

Nevertheless, one simulation involving 

N=1000 gave a predicted yield of 46.76% as 

compared with the actual yield of 48.48%. These 

results show that there is good agreement 

between the predicted and the actual yields.   

Sensitivity of the results to the number of 

simulations—Table 6 shows the values of the 

yield for different number of simulations, N. It 

can be seen that the simulated values of yield 

compare favorably with the actual value, which 

is 48.48%. It can be noted likewise that the 

predicted value of the yield does not vary much 

with the number of simulations used. Any small  
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FIGURE 6: RELATIVE FREQUENCY DISTRIBUTION OF PARAMETER 1 

 
 

FIGURE 7: RELATIVE FREQUENCY DISTRIBUTION OF PARAMETER 2 

 
 

FIGURE 8: CUMULATIVE PROBABILITY DISTRIBUTION OF PARAMETER 1 
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FIGURE 9: CUMULATIVE PROBABILITY DISTRIBUTION OF PARAMETER 2 

 
 

TABLE 5: COMPARISON OF THE MEAN AND STANDARD DEVIATION BETWEEN 

ACTUAL AND SIMULATED VALUES OF THE TRANSISTOR DEVICE 

 
 

discrepancy can be attributed to inherent 

simulation error particularly in the generation of 

pseudo-random numbers. This also suggests that  

 

some degree of pre-processing of raw data may 

be needed to obtain probability density functions 

that reflect the actual statistics of the population.  

 

TABLE 6: YIELD AS A FUNCTION OF THE NUMBER OF SIMULATIONS 

Number of 

Simulations 

Yield (%) 

500 44.01 

600 43.943 

700 44.482 

800 43.162 

900 45.509 

1000 46.76 

 

VI. CONCLUSION 

Accurate and proper yield prediction can 

help the management plan their operations 

activities more effectively. Although, there have 

been different methods used in predicting device 

yield performance, the best method is to consider 



Journal of Supply Chain and Operations Management, Volume 10, Number 2, September 2012 

136 

 

wafer level parameter interactions in the analysis 

of device yield performance.  The Monte Carlo 

Simulation can be used as a good yield prediction 

as illustrated in the case study. 

The plant capacities of each company-

owned factory and subcontractor facility could be 

more efficiently allocated.  Each site can run 

their own production smoothly, with minimal 

problems on setup time and costs.  Production 

capacity is efficiently utilized when production 

schedules are on-track.  Similarly, the fabrication 

processes are not disrupted because of additional 

wafers that need to be rushed through production 

in cases when the variances between the actual 

and predicted yields are significant. 

In the same manner, the jobs of the 

people in marketing, sales and customer service 

departments are made a lot easier.  They would 

be able to fulfill commitments to client 

companies.  The specified quantity of the 

products will surely be delivered on the agreed 

schedule between the company and the customer.  

Losing customers due to failures in delivery 

commitments will be minimized.  In the cutthroat 

semiconductor industry, customer retention, 

product quality and on time delivery are critical 

priorities.  If these priorities are being met by 

predictable and reliable product outputs, 

company resources can be re-focused on market 

expansion and new product development. 

All these developments translate to a 

reduction of overall production and product 

costs.  Good yield prediction creates a domino 

effect.  On the operations side, production can 

run smoothly and according to planned schedules 

all throughout the year.  There is minimal idle 

time due to lesser down time in equipment and 

human resource.  Scraps on the production floor 

will be minimized with more products going to 

the customers rather than stay in warehouses as 

binned inventory. Asset utilization would be 

maximized.  Asset turnaround time and inventory 

turnover would be shorter, resulting to a more 

efficient use of capital.   The result is increased 

productivity and efficiency for the company as a 

whole. 

Further study can be done using different 

yield prediction tools as applied to different types 

of semiconductor products. The choice of the 

yield simulation model to use should take into 

consideration the different process parameters of 

the individual products. 
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