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Work cells are becoming increasingly common in manufacturing.  Machines are typically 

arranged to perform work on a set of similar items.  Studies have shown that this 

configuration leads to less material handling, less work-in-process, reduced setup times, and 

greater overall flexibility.  Two aspects of scheduling work cell systems are considered in 

this study, (1) when to dispatch jobs to a work cell that is busy but has not received recent 

jobs and (2) when to dispatch both jobs and workers to idle cells.  Two methods for 

determining mathematically how much time should elapse before jobs and workers are 

assigned are explored.  One rule appears to reduce mean flow time in a simulation model.  

Another simpler rule can be used in some scheduling situations and performs almost as well 

in the simulation study.  These two models are applied to an actual example from a southern 

California manufacturing facility. 
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I. INTRODUCTION 

 

Manufacturing work cells include groups of 

machines and related equipment, typically 

arranged in a U-shaped configuration, which 

process similar but not identical jobs.  Cellular 

manufacturing is a hybrid layout, intermediate 

between an assembly line and a job shop.  It was 

designed to combine the efficient one-way flow 

and lack of setups characteristic of assembly 

lines with the flexibility of job shops, able to 

produce a wide variety of jobs.  Studies by 

Kaimann and Bechler (1983), Kannan and Ghosh 

(1995), Akturk and Turkcan (2000), and 

Miltenburg (2001) show that work cells reduce 

setups, in-process production times, queue 

lengths, and average job waiting time.  Work 

cells are also the subject of this study. 

 Some cellular manufacturing systems 

include order release centers where dispatchers 

can hold or release jobs.  Mahmoodi, Dooley, 

and Starr (1990) noted that such systems could 

yield beneficial results in practice.  In their 

research the systems worked best under 

situations of tight due dates and low load.  Other 

systems employ material-handling devices to 

release jobs.  Lee, Wang, and Chu (1990) 

developed what they claim is an efficient 

dispatching algorithm for such devices.  Al 

Kattan (2005) balanced workload in designing 

cellular systems.  Celano (2008) focused on 

scheduling unrelated parallel cells with limited 

human resources.   Dixit (2010) incorporated 

operation sequence in inter-cell movement 

calculations so that workload is uniform on the 

machines.  All the systems described above are 

alike in that jobs are not instantly dispatched, 

which is also the case in this study. 

 

II. OPTIMIZING DISPATCHING DELAYS 
 

In this study delays in the dispatching of 

jobs are considered.  Unlike previous studies, 

procedures are developed for attempting to 
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optimize dispatching delays. These procedures 

can be applied to the release of (1) jobs for 

assignment to cells that are busy but have not 

received recent jobs and (2) jobs and workers for 

assignment to idle manufacturing cells.  The 

latter case involves fewer workers than cells, a 

system that has been called dual-resource 

constrained (DRC) in the literature.  Studies by 

Nelson (1967), Fryer (1974), Gunther (1981), 

Kher and Malhotra (1994), Jensen (2000), and 

Gunther and Johnson (2010) have demonstrated 

that DRC systems offer a degree of flexibility not 

found in non-DRC or machine-limited situations.  

This study also analyzes a DRC system.  That is, 

delays can occur in both dispatching jobs and 

workers. 

In both situations above optimizing the 

timing of assignment is crucial.  If reassignments 

are too frequent, workers will often be forced to 

interrupt important work in other cells and waste 

productive time walking and performing setups.  

A strict SPT rule will not work well in this 

situation because it allows frequent 

reassignments.  Alternately, if reassignments are 

too seldom, important work waits too long to get 

dispatched.  Proper reassignment timing can 

optimize a firm's productivity.  It can be 

mathematically determined how much time 

should elapse before the workload intended for a 

cell justifies its dispatch and, in some cases, the 

reassignment of workers.  A probability 

distribution is derived by Gunther (1981) and 

modified for this study.  The derivation follows. 

Suppose n jobs intended for a given work 

cell have arrived at a dispatch center since the 

last job assignment.  In this model the status of 

these jobs does not have to be known.  Let 

 

Ci = characteristic of job i (i=1, n).                   (1) 

 

Characteristics are used to determine job 

priority.  They can include process times, due 

dates, ratings, etc.  In all cases jobs with the 

smallest Ci have priority.  This is consistent with 

the shortest process time (SPT) and earliest due 

date priority dispatch rules used both in practice 

and in research.  Then 

 

F(c) = probability (Cic),     (2) 

    

[1-F(c)] = probability (Ci>c),    (3) 

 

and 

 

[1-F(c)]
n
 = probability n jobs have Ci>c|n 

arrivals.      (4) 

so 

 

Gn(c) = 1-[1-F(c)]
n
,     (5) 

 

where Gn(c) is the probability at least one 

job has Cic|n arrivals.  The marginal probability 

of at least one job with a characteristic less than 

or equal to c is given by 

 

G(c,t) =  


0n

{1-[1-F(c)]
n
}{P[N=n in t]},    (6)  

 

where 

      

t = time elapsed since last assignment,    (7) 

 

P[N=n in t] = probability of n arrivals in  

                      time  t.                                         (8) 

 

Assume that the characteristics of jobs 

arriving at the dispatch center are exponentially 

distributed.  This is not unreasonable since these 

characteristics represent process times or due 

dates.  Further assume that arrivals into the 

dispatch center follow a Poisson process.  Thus 

we have 

 

F(c)  = 1-e
-µc

 ,                                   (9) 

 

where 1/µ is the mean job characteristic (i.e. 

process time) for all jobs arriving to the dispatch 

center. 

 

P[N=n in t] = [(t)
n
e

-t
]/n! for n = 0,1,2, ...,  (10) 
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where  is the mean arrival rate of jobs arriving 

in the dispatch center.  Combining equations 6, 9, 

and 10 gives 

 G(c,t) =  


0n

 [1-e
-µcn

] [(t)
n
e

-t
/n!].              (11) 

 

Simplifying terms 

 

G(c,t) =  


0n

[(t)
n
e

-t
/n!] - 



0n

[(t)
n
e

-t
e

-µcn
/n!] 

 (12) 

 

G(c,t) = 1 - [e
-t

]  


0n

[(te
-µc

)
n
/n!].    (13) 

 

Maclaurin's Theorem can be used to show 

 




0n

[(te
-µc

)
n
/n!] = exp(te

-µc
).    (14) 

 

Combining equations (11) and (12) and 

simplifying 

 

G(c,t) = 1 - exp[t(e
-µc

-1)]   (15) 

 

G(c,t) gives the probability a job with a 

characteristic, such as a process time or slack, 

less than c has arrived at a dispatch center (or 

kanban rack) during the time t.  Characteristics 

are related to job priorities, i.e. slacks are used if 

jobs are scheduled least slack first, a rule 

sometimes used when meeting due dates. A job 

with a sufficiently small characteristic c, such as 

a small slack or a short process time, is a high 

priority job.  c is a parameter; large values of c 

increase G(c,t).  This is because a large c implies 

a job with a smaller value of c has likely arrived 

at the dispatch center.  The time elapsed since the 

last assignment is represented by t.  t is another 

parameter; large values of t will also increase 

G(c,t).  The more time that elapses increases the 

probability that a high priority job has arrived.  

Job arrivals are assumed to be Poisson with mean 

arrival rate and service times are assumed 

exponential with mean 1/µ. 

Two methods for implementing equation 

(15) are explored in this study for the first time.  

One approach, denoted as Method A, is to set 

G(c,t) to some probability p and solve for c 

giving 

 

c = -ln{1+[ln(1-p)/t]}/µ.    (16) 

 

In equation (16) p is a parameter that 

represents a critical value of G(c,t).  High values 

of p imply that a high-priority job has arrived.  

Simulation will be used to explore good 

performing values of p.   

 Once p is known, equation (2) can be 

solved numerically for c.  If at time t all jobs at a 

work cell have characteristics greater than c, new 

jobs are dispatched or a worker can obtain new 

jobs, i.e. at a kanban rack.  New jobs are obtained 

because there is a high probability (p) a high 

priority job has arrived and needs to be worked 

on.  Method A is designed to reduce mean job 

flow time to a minimum since it incorporates 

information related to the arrival of high priority 

jobs. 

Another approach, labeled Method B, is 

designed to be a practical, easier-to-use 

alternative to Method A.  This will be shown in 

the implementation section below.   For example, 

it can be used when a firm is basing its schedules 

on service time, i.e. shortest job first or SPT 

sequencing.  In this case c is set equal to the 

typical or mean service time (1/µ) of all jobs that 

have arrived during t.  Thus, 

1/µ  = c = -ln{1+[ln(1-p)/t]}/µ.   (17) 

 

Solving equation (17) for t gives 

 

t = [(e)ln(1-p)] / [()(1-e)].    (18) 

 

With this rule new jobs are dispatched or a 

worker can obtain new jobs after a time of t has 

elapsed.  Again, simulation will be used to 

explore good performing values of p.  In equation 
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(4) note that t is a direct function of , the arrival 

rate.  The more arrivals there are in a time period, 

the more often new jobs should be dispatched or 

obtained. 

 

III. SIMULATION STUDY 

 

Simulation was used to compare rules 

incorporating methods A and B with several 

simpler benchmark rules.  It was also used to find 

the best performing values of p for various 

situations.  In one such simulation, a sample of 

30000 jobs was tested with the following 

parameters: two cells and one worker (DRC), 

process time characteristics (c is process time), 

shortest processing time (SPT) and first-come 

first-served (FCFS) job priorities, 75% 

utilization, and setups and transfers set at 0.3.  

Parameters were chosen which were comparable 

with previous studies and the case described 

below. 

Table 1 shows the simulation results.  The 

first two rows (0 delay) illustrate the extreme 

case of job and worker reassignments after every 

job, while the third and fourth rows ( delay) 

imply job and worker reassignments only when 

cell centers are idle.  The next or fifth row, 

Method B, is a compromise between the first two 

extremes; reassignments are made after t time 

periods have elapsed.  A number of delay 

parameters t were tested with this rule in 

preliminary simulation studies.  A value of t = 2 

and SPT sequencing minimized mean flow time 

in these trial simulations.  The value of t = 2 is 

consistent with computations using equation (4).  

The bottom line in Table 1 shows the results for 

Method A.  This procedure did result in the least 

mean flow time, while Method B came in 

second.  SPT with 0 delay, the same as strict 

SPT, had the second to worst mean flow time. 

These results were significant using paired-

comparison t tests. The best performing value of 

p was .8 but values from .6 to .9 resulted in 

almost the same mean flow times. 

The variance results are interesting.  

Rules with zero delays require workers to spend 

a great deal of time being reassigned, which 

increases transfers and setups.  This results in a 

highly utilized system with very high flow time 

variances.  Long delays in reassignment 

(parameter ) have the opposite effect. 

 

TABLE 1. Simulation Results 

Rule Priority Mean Flow Flow Variance   % Setup                      

          0 Delay FCFS 771.51 1102.8      28.4 

0 Delay SPT   17.45 29,668      29.6 

 Delay* FCFS     4.69     17.4      13.8 

 Delay SPT      4.05         19.9      14.1 

Method B**   SPT     3.86         40.4      15.0            

Method A*** SPT      3.61         44.1      15.1 

   

*Best Performing FCFS Rule 

**Delay t = 2, Reduced Mean Flow Time in Other Simulations 

***G(c,t), p=.8, Reduced Mean Flow Time in Other Simulations 
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IV. IMPLEMENTATION 

A manufacturing facility in southern 

California is used to gather data that can be used 

with equations (1) and (2).  This plant makes 

parts for hydraulic actuators and rotors and has 

typical work cells.  The specific work cell studied 

here performs work on pistons with two eight-

hour shifts.  Utilization is 62.5%, and setup is 

22% of mean job process time.  Management is 

primarily concerned with meeting due dates and 

some jobs have been running late.  The system is 

dual resource constrained (DRC) since workers 

are occasionally subleased out of the cell. 

 

TABLE 2. G(c,t) at Manufacturing Facility 

 

 
 

Table 2 reports G(c,t) for six values of c 

and four values of t using parameters from the 

actual work cell. Table 3, based on Method A 

with p equal to .8, provides a dispatch table for 

eight values of t. This table can assist 

management in determining when jobs and 

workers should be assigned to cells. For example, 

suppose that at time t (i.e. 3 from the table) all 

jobs at a cell have a process time greater than c 

(.481 according to the table).  Then more jobs 

(likely shorter jobs) and possibly workers should 

be dispatched to that cell.  It is interesting to note 

that during the first time period no jobs should be 

dispatched, as the probability of any jobs arriving 

during this period is less than p = .8. 

An easier to use dispatch table, based on 

Method B, is shown in Table 4.  As an example, 

the value for the manufacturing cell is about 

1.2 and a p =.8 will again be used.  The table 

gives a t of 2.122, so that new jobs are dispatched 

after 2.122 time units.  This value of t is 

consistent with the simulation results reported in 

Table 1.  In contrast, the actual firm currently 

dispatches jobs much more frequently with 

resultant long job flow times. 

 

TABLE 3. Dispatch Table, Method A 

 

 
 

TABLE 4. Dispatch Table, Method B 

 

 
 

V. SUMMARY 

 

It has been shown that there is an 

optimum time for delaying (1) job assignments to 

work cells from a dispatching center or (2) 

worker assignments to other cells.  Table I 

showed that proper timing of dispatches can 

reduce job flow times using simulation.  Method 

A, designed to reduce mean flow time, performed 

best.  Method B, a simpler rule also designed to 

reduce mean flow time, performed second best.  

The case study indicated that dispatches in a firm 

can be too frequent and flow times too long.  

However, changes in dispatch timing should be 

easy to implement. 
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