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Traffic congestion causes substantial variation in travel time during different hours of a day.  

This significantly influences travelling decisions. In the context of supply chain, the 

travelling decisions with time varying travel times are triggered in a Time Dependent 

Location Routing Problem (TDLRP). Hence, in this paper an exact formulation of the 

TDLRP is presented in which the time taken to travel between each pair of nodes is a 

function of time. The problem formulation eliminates the waiting times at customer 

locations and also can tackle the problem with different scenarios such as, no time windows, 

with hard and soft time windows, and time dependent demand. The presented Integer Non-

Linear model is linearized and solved using CPLEX. The Branch and Bound approach and 

other cutting approaches are used for solving the model. The results show that the pure 

Branch and Bound provides the results faster than cutting approaches for small size 

problems. 
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I. INTRODUCTION 

 

The problem under investigation in this 

paper is a Location Routing Problem (LRP). LRP 

is the combination of two problems Location-

Allocation Problem (LAP) and Vehicle Routing 

Problems (VRP) (Christofides and Eilon, 1969). 

LAP is the problem of locating a set of potential 

facilities and allocating customers to the 

locations with an objective of cost minimization 

(Fisher and Jaikumar, 1981). On the other hand, 

VRP is the problem of finding a set of routes 

originating from a set of depots to serve a set of 

customers with known demands. Each customer 

must be visited only once and all vehicles return 

to the depot from which they departed. Also, 

cumulative customer demands in a route should 

not exceed the vehicle capacity (Arntzen and 

Brown, 1995). Since the location of a 

Distribution Center (DC) impacts the routing of 

vehicles, LAP and VRP are investigated together 

in a more comprehensive problem called LRP.  

There are four major problems which 

have to be tackled in a supply chain network - 

production, location-allocation, inventory, and 

transportation (routing). Among the four, 

location–allocation and routing are usually 

considered as the core problems of supply chain 

logistics (Larson and Odoni, 1981). These are 

usually refered to as LRP. Time Dependent LRP 

(TDLRP) is a variant of LRP in which the travel 

times between nodes in the network is not 
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constant and may change depending on the time 

at which the travel occurs. Even though LRP has 

been vastly investigated in literature, research on 

TDLRP is very scarce (Figliozzi, (2009), Ichoua, 

Gendreau, and Potvin, (2003)).  Existing research 

work usually addresses only the VRP with time 

dependent travel times and do not approach the 

location and routing problem simultaneously. 

Orda and Rom (1990) proposed an algorithm for 

the shortest problem in which an arbitrary 

function for a link delay is allowed. The 

objective of the work by Orda and Rom is to find 

the shortest path and minimum delay under 

different waiting constraints. Ahn and Shin 

(1991) developed a heuristic for VRP with time 

window constraints and time-varying congestion. 

The heuristic is a modification of the saving, 

insertion, and local improvement algorithms. Hill 

and Benton (1992) presented a method for 

estimating the time dependent travel speed and a 

heuristic to solve the Time Dependent Vehicle 

Routing Problem (TDVRP). Malandraki and 

Daskin (1992) presented a Mixed Integer Linear 

Programming (MILP) model for the TDVRP 

with time window constraints. They developed a 

heuristic algorithm using the nearest 

neighborhood heuristic for VRP without time 

windows. In addition, a mathematical heuristic 

for the TDVRP with time windows was also 

developed. In this work, waiting time is allowed 

at nodes.  The step functions considered for the 

travel times are symmetric. Ichoua, Gendreau, 

and Potvin (2003) presented a heuristic solution 

methodology based on Tabu-search algorithm. 

Figliozzi (2009) presented a flow-arc formulation 

for the TDVRP with hard and soft time windows 

along with heuristic algorithms for solving the 

problem. Most recent efforts regarding the 

TDLRP has focused on developing a 

heuristic/meta-heuristic for solving the problem 

(Hashimoto, Yagiura and Ibraka, (2008); Donati, 

Montemanni, Casagrande, Rizzoli, and 

Gmabardella, (2008); Zheng-yu, Dong-yuan, and 

Shang, (2010)). 

All efforts in the formulation of TDVRP 

in literature incorporate the assumption of time 

windows and to the best knowledge of the 

authors there is no formulation for the TDVRP 

without consideration of time windows. Time 

windows define a time period during which the 

customer can be served.  The assumption of time 

windows is used to simplify the formulation of 

the problem and to calculate the arrival time at a 

node according to two conditions: 1) sum of the 

arrival time at a customer and the travel time 

from the current customer to the next customer 

should be less than the latest arrival at the next 

customer; and 2) the service start time at each 

customer should be within a specified time 

window.  These two conditions may sometimes 

lead to large and unrealistic waiting times at 

customer locations.  For instance, consider a 

truck which is at a customer location at time 40.  

The time window for serving the next customer 

is [200, 260] and the travel time to the next 

customer is 20 minutes.  Based on the traditional 

formulation, the arrival time at the next customer 

can be any time between 200 and 260 which 

results in a waiting time of at least 140 minutes 

for the truck before serving the next customer, 

which is not practical, especially if the time unit 

is large e.g. hours, days, etc.  The main weakness 

of methods presented for TDVRP in literature 

can be categorized into two groups: 

 

1. The travel time function is usually 

considered as a discrete step function. Due 

to this assumption, waiting times have to 

be permitted at customer location in order 

to get feasible solutions.   

2. The effort toward applying a continuous 

travel time function is very rare and the 

formulations presented are too 

complicated and intricate to be analytically 

solved.  A continuous travel function will 

allow improved modeling of the travel 

times, especially when the time intervals 

are for a day or shorter.  This also allows 

easier analysis of the travel function, when 

the time changes from a highly congested 

to less congested or vice-versa.  
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The objectives of this paper are to 

alleviate these two shortcomings in the current 

literature and enhance the TDLRP formulation.  

The goals of this research are to develop a 

formulation for TDLRP when travel times are a 

function of time (discrete or continuous) and no 

waiting time is allowed at a customer location.  

The travel time function can be developed from 

historical data of traffic congestion.  A TDLRP in 

which each customer`s demand has to be 

satisfied within a time interval is called TDLRP 

with Time Window (TDLRPTW).  In literature, 

whenever the TDLRP is investigated, it is in fact 

a TDLRPTW and it seems that the TDLRP and 

time windows are not separable.  In literature of 

TDLRP, there is no formulation of the problem 

in which there is no time window.  The 

formulation of TDLRP without time window is 

necessary for eliminating the waiting times at 

customers’ location as described earlier. In this 

research, TDLRP formulations with hard and soft 

time windows are also developed.  The 

formulation is further extended to include time 

dependent demand.  By applying the 

formulations proposed in this paper, it is 

expected that the best strategy regarding the 

location of DCs, allocation of customer to DCs 

and the routing plan from DCs to customers can 

be determined. 

Section 2 of this paper provides a detailed 

definition of the problem under investigation.  

Section 3 is devoted to the development of the 

mathematical formulation for the TDLRP with 

different scenarios.  In Section 4 an illustrative 

example is solved for each of the mathematical 

models presented in section 3.  The linearization 

of the MINLP and the solution approach are 

investigated in section 5.  Finally, section 6 

provides conclusion and future research 

directions. 

 

II. PROBLEM STATEMENT 

 

In this section, notations used for the 

formulation of the problem are presented. There 

are N customers and M depots in the problem. 

The collective set of DCs and customers in the 

network is represented by nodes.  Nodes 1 to N 

represent customers and nodes N+1 to N+M 

represent DCs. The decision variables in the 

formulation, provides the assignment of 

customers to vehicles, vehicles to DCs, as well as 

the sequence of visits by each vehicle.  When 

nodes are assigned to a vehicle, a route is formed. 

Thus, a route is formed by a set of nodes.  

Position of a node in the route, is the order in 

which the node is visited by the vehicle. For 

instance, if node g is in position 2 of vehicle 1’s 

route, it implies that node g is the second node 

visited by vehicle 1. D is the set of possible 

positions that a customer can take in a route. A 

vehicle may be assigned to visit at the most all N 

customers.  Thus, the maximum number of 

possible positions for a customer is equal to N. 

The decision variables, Xmgv = 1, implies that 

node g (a customer or a DC) is the m
th 

node 

visited by vehicle v. Or in other words node g is 

the m
th 

node in the route assigned to vehicle v. 

Thus, in the definition of the notations, vehicle 

and route are used alternatively since they 

represent the same concept.  

 

N  Total number of customers 

M  Total number of DCs 

K  Total number of vehicles 

I  Set of customers, I= {1, 2,…, N} 

J  Set of DCs J= {N+1,2,…, N+M} 

D Set of possible positions that a 

customer can take in a route,      

D= {1, 2,…, N} 

V  Set of Vehicles, V= {1,2,…,K} 

       Yv   Capacity of vehicle v
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Eg     Customer g fulfillment level, g I   

g/h                Index used for all nodes  

Xmgv   
1 if node  is in position  of the route ;  

 
0 otherwise

g m v



  ; ;g m D v VI J     
 

Pmv   
1 if  is the last taken position of route ;

0 otherwise

m v

  

;m D v V     

Og  
1 if there is any vehicle assigned to node ;

0 otherwise

g

  

g J   

zvh  
1 If vehicle  is assigned to node h; 

0 otherwise

v

  

;h J v V     

C  Cost per unit of time (Labor cost, vehicle cost etc.)  

qg  Fixed cost for establishing node g, g J   

dg  Initial demand of node g, g I   

fg(t)   Demand function of node g at time t, g I   

Sg  Service time at node g , g I   

Amv  Arrival time at position m of route v, ;m D v V     

            tmv  Cumulative departure time from position m on route v, ;m D v V     

 Tmv Departure time from position m on route v (between 0:00 and 24:00), 
;m D v V  

 

Fgh <t> Travel time function between nodes g and h,  ,g h I J    

Bg  Departure cost from Distribution Center  g, g J   

αmv  

1 if earliest arrival at position  of route  is violated; 

0 otherwise

m v



;m D v V     

   βmv  

1 if latest arrival at position  of route  is violated; 

0 otherwise

m v



;m D v V     
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 ag   Earliest arrival time at customer g, g I   

          bg  Latest arrival time at customer g, g I   

          Δag  Maximum Deviation permitted from the earliest arrival time at customer g,     
g I   

         Δbg  Maximum Deviation permitted from the latest arrival time at customer g, g I   

         w
1
g 1 if demand has decreased at the delivery time to customer g; 0 otherwise,

g I   

w
2
g 1 if demand has increased at the delivery time to customer g; 0 otherwise, 

g I   

λ                    Lost order cost 

γ              Percentage change in unit price of extra product delivered 

Ω              Profit obtained from selling a unit of product 

ρg   penalty cost associated with violation of lower time limit at customer g, g I   

φg   penalty cost associated with violation of upper time limit at customer g, g I   
 

To ensure that the vehicles’ depart always 

from a DC, position zero of each route is 

reserved for a DC.  Hence, only DCs can be 

assigned to position 0 and DCs cannot take any 

other position in a route. 

Each customer g I has a demand dg 

which is less than the vehicle capacity, Yv.  The 

travel time between each pair of nodes in the 

system is a function of time, Fgh<t>, which is 

derived from historical data.  There are K 

heterogeneous vehicles available and each 

vehicle departs DCs fully loaded.  In addition, M 

locations are available for the establishment of 

DCs.  If a DC is established, it incurs a cost of qg, 

g J in the system.  There is only one type of 

product in the system.  The objective of the 

problem is to find the location for establishment 

of DCs and routing plan for vehicles in order to 

minimize the system cost. 

Xmgv’s are the decision variables defined 

to model the problem.  Xmgv is a binary variable 

for  , ,g m D v VI J      which takes a 

value of 1, if node g (a customer or a DC) is 

placed in order (position) m of vehicle v‘s routing 

plan; and otherwise it is 0.  There are additional 

terms defined to simplify the representation of 

the objective function and the constraints in the 

problem formulation.  Pmv, presented in (1) is 

used to determine the final position taken on 

route v. 

  
1

(1 ) /

mgv

g I

N

m v mgv

g Im m

mv v V

X m N

P X m D N

P




  





  





 






 (1) 

Position 0 of each route is reserved for a 

DC. If the binary variable,
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0 1, ,gvX g J v V    
, it means that vehicle v 

is assigned to distribution center g.  However, 

distribution center g is not opened until a 

customer is also assigned to the vehicle v.  Thus, 

g will be vehicle v’s DC only if there is a link 

between the depot and a customer in the network.  

zvh defined in (2) ensures that a connection exists 

between a DC and a customer in the system.  zvh 

is similar to the connectivity constraint between 

LAP and VRP in traditional formulation of LRP, 

and connects the location decision to routing 

decisions. 

0 1
. ;

hv gv

g I

vh X X h J v Vz


  
                      (2) 

The value of tmv is calculated through a set of 

recursive equations given by (3).  The value of 

tmv can be considered to be 0, if the start time is 

set as zero.

 
 

 
 

0

( 1) 1

1

0

;

v

m

mv gh m v h m gv m hv mgv

m h I g I J g I

t

m D v V
t F t S X X X  

    




      
     

  
  

              (3) 

If the travel time function repeats itself after H units of time, (3) must be replaced by (4) to 

calculate the tmv ;m D v V    . 

 

 
 

0

( 1) 1

1

0

;

( , )

ov v

m

mv gh m v h m gv m hv mgv

m h I g I J g I

mv mv

T t

t F T S X X X m D v V

T Mod t H

  
    

 


  
         

   
 

  

  (4) 

 Where, Mod function returns the reminder of dividing tmv by H.  For instance, if the travel time 

functions are represented in unit of hour and they repeat every day, the value of H will be 24.  In the 

following section, the mathematical formulation of the problem is presented. 

 

III. MATHEMATICAL FORMULATION 

OF THE PROBLEM  

 

As already discussed one of the main 

drawbacks of existing formulations of TDVRP is 

the possibility of waiting times at customer.  The 

formulation of the problem presented in this 

section overcomes this deficiency thus 

eliminating the waiting times at customers’ 

location. 

The TDLRP is first formulated without 

time window condition in section 3.1.  The 

formulation of the TDLRP with time windows is 

then addressed in section 3.2 and 3.3.  The 

formulations in section 3.2 and 3.3 ensure that  

the waiting time at customers’ location are 

eliminated.  The time window can be hard or 

soft.  In a formulation with “hard time window”, 

each customer has an associated time window 

during which the demand has to be met.  The 

vehicle cannot deliver products to the customer 

before the start of the time window or after the 

time window has elapsed, i.e. late or early arrival 

at a customer is not acceptable (Section 3.2). In a  

TDLRP with “soft time window” (Section 3.3), 

the customer can be served before and after the 

preferred time window, i.e. early or late arrival at 

a customer is acceptable up to a predefined limit.  

However, when there is a late or early service to 

the customer, there is a penalty cost associated 
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with the violation of the time window. Section 

3.4 presents the formulation when both demand 

and travel times are time dependent. 

 

3.1 Formulation for TDLRP without time 

windows 
 

The MINLP programming of the problem 

defined in section 2 is presented below: 

 

 0* * *mv mv hg mv gv mhv vg g g g

v V m D h I g J v V g J g J

Min

C P t F T X X z B q O
      

 
   

 
   

    

(5) 

 

Subject to: 

1
mgv

v V m D

X g I
 

             (6) 

1 ;
mgv

g I

X m D v V


              (7) 

mgv

g I m D

g vX Y v Vd
 

             (8) 

0
mgv

v V g J m D

X
  

            (9) 

0
0

gv

v V g I

X
 

             (10) 

   
1

;
m gv mgv

g I J g I J

X X m D v V


   

             (11) 

1vg
g J

z v V


              (12) 

g gvg
v V

O z KO g J


              (13) 

1 vg

v V g J

z K
 

             (14) 

 , , , 0,1mgv hv mv gX z P O 
 

 

Equation (5) is the objective function 

which minimizes the total travel time, the 

establishment cost of DCs, and the vehicle 

dispatching cost from DCs.  Constraint (6) 

ensures that each customer appears in only one 

route, i.e. only one route is assigned to each 

customer.  Constraint (7) enforces that each 

position of a route will not be taken by more than 
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one customer.  Constraint (8) makes sure that the 

total demand of customers assigned to a route is 

less than the vehicle capacity. It is assumed that 

position zero of each route is reserved for DCs.  

This assumption implies that DCs cannot take 

any other position in routes (9) and also 

customers cannot take position 0 of their 

assigned route (10).  Constraint (11) ensures that 

position m+1 of a route cannot be taken unless 

position m is taken.  Constraint (12) ensures that 

a vehicle is not assigned to more than one DC.  

Constraint (13) determines whether a DC is open 

or is close.  Constraint (14) keeps the total 

number of the vehicles between one and the 

number of available vehicles. 

 

3.2 TDLRP with time windows hard time window 
 

In this problem, it is assumed that waiting at a customer location is not allowed.  The difference 

between the arrival and departure times at a customer is the service time. Therefore, the arrival time at 

a customer can be determined by (15). 

 

 
1

1

;
m

mv mv h m gv m hv mgv

m h I g I J g I

A t S X X X m D v V 
    

  
        

  
      (15) 

Where, Amv calculates the arrival time at position m of route v. When service times are zero (4) 

is reduced to (16). 

 

;mv mvA t m D v V              (16) 

Therefore, by adding the constraint presented in (17) to the set of constraints 6-14, the model 

can handle LRPTD with hard time windows. 

;g mgv mv g mgv

g I g I

a X A b X m D v V
 

             (17) 

3.3 TDLRP with Soft Time Window 
 

As opposed to hard time windows, soft time windows allow the time interval violation with an 

assigned penalty cost. Therefore, the objective function (18) has a term related to the penalty cost 

associated with the time window violation. 

 

 

0* * *mv mv hg mv gv mhv vg g g g

v V m D h I g J v V g J g J

mgv g mv g mv

v V m D g I

Min

C P t F T X X z B q O

X    

      

  

 
   

 



   



   (18) 

 The objective function minimizes the total travel time, the DCs establishment cost, vehicles 

dispatching cost, and the penalty costs associated with time window violation. 
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 Time window constraint must also be modified to consider the permitted flexibility. The 

modified constraint is presented in (19). 

 

;g mgv g mgv mv mv g mgv g mgv mv

g I g I g I g I

a X a X A b X b X m D v V 
   

   
           
   
   

       (19) 

 , 0,1mv mv    

Constraint 19 is used to enforce that the arrival time at each position of a route must be within the 

related time interval with associated allowed deviation.  Thus, by replacing the objective function 

presented in (5) with the term presented in (18), and adding constraint (19) to the set of constraints (6-

14), the model is modified to be applied to LRPTD with soft time windows. 

 

3.4 LRP with time and demand as function 

of time  

 

In conventional LRP with Time Window 

(LRPTW), each customer has an initial demand 

called Dg.  The demand may either exist or expire 

depending on the arrival time at the customer. 

This statement is shown by the mathematical 

formulation presented in (20) (Mirzaei and 

Krishnan, 2011). 

 

0

(

0

)

g g

g g g

g g

g g

if a

f if a b g I

if b

d











   






 

        (20) 

 

Where ag is the earliest arrival time at 

node g, and bg is the latest arrival time at node g.  

Also, based on the basic assumptions of vehicle 

routing problems, , .
g

VC g Id     

However, in LRP with Time Dependent 

Demand, the initial demand is expected to 

change from the time of initiation, i.e. f (τg),

g I  .  In fact, the conventional LRPTW is a 

special case of time dependent demand problem 

in which the demand function is defined by (20).  

This section is devoted to the development of a 

formulation for the TDLRP in which demands 

and the travel time change are defined by 

parametric time-dependent functions. Arrival 

time at customer g can be calculated by (21). 

,
g mgv mv

v V m D

X A g I
 

  
              (21) 

The objective function of the TDLRP 

with time dependent demand minimizes the total 

cost of the system while maximizing the profit. 

When a customer demand changes with time, the 

customers demand at delivery time is not the 

same as its initial demand.  Therefore, for 

customers with decreasing demand function, 

there is a “lost order cost” incurred in the system.  

This cost is the result of not meeting the demand 

completely or partially. i.e. (dg- fg(t))*λ, where λ 

is the lost order cost per unit of product. The 

profit is the product of total quantity delivered to 

the customer, the profit per unit, and the 

customer fulfillment level, i.e. Profit = 

fg(t)*Eg*Ω in which Eg is the customer 

fulfillment level defined by (22). 

 

( )

g

g g

g

f
E g I

d


  

     (22)  

       
The value of Eg is dynamic and depends on the 

time of delivery.  The value of Eg for customers 

with a monotonously increasing demand function 

is greater than one, and for customers with a 

monotonously decreasing demand function will 

be less than one.  The unit product price for the 

additional number of products delivered to 
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customers with increasing demand can be different from the initial price. For example, the 

price can be cheaper due to quantity discount. γ is the constant representing the percentage of decrease 

or increase in the price. 

 

The objective function for TDLRP with time dependent is given in (23). 

 

 

 

0

1 2

* * *

* *( ( )) * * *( ( ) ) ( )

mv mv hg mv gv mhv vg g g g

v V m D h I g J v V g J g J

g g g g g g g g g g g

g I

Min

C P t F T X X z B q O

w d f w f d E f    

      



 
   

 

     

   


                                      (23) 

 

Where, the first term determines the total 

transportation cost which is the product of the 

total travelling time and unit time cost.  The 

second term is the vehicle dispatching cost from 

DCs.  The third term includes the fixed DC 

establishment cost.  The last term includes lost 

order cost, additional order cost/profit, and sale 

profit respectively.  Two modifications are 

required for the set of constraints presented in (6-

14) to handle the TDLRP with time dependent 

demand, as opposed to formulation in section 

3.1.  First, it is necessary to change the vehicle 

capacity constraint (8) by (24) to consider the 

demand variability. 

 

( )*
g mgv

g I m D

g vf X Y v V
 

  
     (24)

 

   
Second, the set of constraints presented in (25) 

should be added to the set of constraints.

  

 

 

1

2

1 2

( ) 0

( ) 0

1

g g g g

g g g g

g g

g I

g I

g I

w d f

w d f

w w





 

 

 

 

 

 
               (25) 

This set of constraints is used to 

determine whether a customer’s demand at the 

time of delivery is higher or lower compared to 

the initial demand.  

 Since the TDLRP is the generic 

formulation for TDLRPTW it can handle both 

soft and hard time windows. Interested readers 

can refer to Mirzaei and Krishnan (2011) for 

more information.  

 

IV.  ILLUSTRATIVE EXAMPLES 

 

4.1 LRPTD without time windows 

Constraints 

 

A two layer network problem is used to 

illustrate the proposed mathematical model.  The 

problem consists of 2 DCs and 4 customers.  

Nodes 1, 2, 3, and 4 represent the customers and 

nodes 5 and 6 represent potential DCs, 

respectively.  Fig. 1 shows the travel time 

functions between DCs (nodes 5 & 6) and 

customers (nodes 1, 2, 3, & 4). Fig. 2 shows the 

travel time functions between each pair of 

customers. Although the model can handle 

asymmetric travel time functions, in this example 

it is assumed that the travel time functions are 

symmetric and they are repeated every 24 hours. 

For testing the model, different type of functions 

are used in this example. Appendix 1 shows the 

list of functions used for this case study.
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FIGURE 1. Travel Time Functions Between DCs and Customers 

 

 

 

FIGURE 2. Travel Time Functions between Each Pair of Customers in the Network 
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There are two vehicles available with 

capacities of 50 and 70 units of product 

respectively.  The departure costs from node 5 

and node 6 are $45 and $50 respectively.  The 

fixed cost of DCs in the planning horizon of the 

problem is $250 for node 5 and $200 for node 6. 

Customers’ demands for customers 1, 2, 

3, and 4 are 40, 25, 20, and 10 respectively. 

Service times at customer’s location are zero. 

The unit time (hour) cost for service is $3. 

The mathematical formulation was solved 

using LINGO 12.0 optimizer software on a 

Pentium D CPU 3.2GHz, and 3.25 GB of RAM.  

The result obtained is shown in Table 1. 

 

Table 1. RESULT OBTAINED FOR TDLRP 

Objective Value 619.06 

Computation Time 00:07:36 

Variables with Value 

of 1 

X112, X131, X221, X242, 

X061, X062, z16, z26, P21, 

P22 

 

The result presented in the table implies 

that there are two routes in the network.  The first 

route is 6-3-2-6 assigned to vehicle 1 with 

capacity of 50 units and the second route is 6-1-

4-6 assigned to vehicle 2 with capacity of 70 

units.  Both routes are assigned to depot 2 (node 

6). 

 

4.2. LRPTD with Hard Time Window 

Constraints  

 

The example is similar to the one 

presented in Section 4.1 with the difference that 

each customer has a time window assigned to it 

(Table 2).  Each customer’s demand is equal to 

its initial demand, Dg, if it is served within the 

specified time window; otherwise it is zero. 

The mathematical formulation presented 

in 3.2 was solved using LINGO 12.0 optimizer 

software on a Pentium D CPU 3.2GHz, and 3.25 

GB of RAM.  The result obtained is shown in 

Table 3. 

TABLE 2. TIME INTERVAL ASSIGNED TO EACH 

CUSTOMER 

Customer 

number 

1 2 3 4 

Time 

interval 

[20,27] [14,16] [20,25] [15,20] 

 

TABLE 3. RESULT OBTAINED FOR TDLRP WITH 

HARD TIME WINDOW 

Objective Value 837.53 

Computation Time 00:00:40 

Variables with 

Value of 1 

X121, X132, X212, X241, 

X061, X062, O6, z16, z26, 

P21, P22,  

 

The result presented in the table implies 

that there are two routes in the network.  The first 

route is 6-2-4-6 assigned to vehicle 1 with 

capacity of 50 units and the second route is 6-3-

1-6 assigned to vehicle 2 with capacity of 70 

units.  Both routes are assigned to depot 2 (node 

6). 

 

4.3. LRPTD with Soft Time Window 

Constraints 

 

The example in this part is similar to the 

example of Section 4.2 with the difference that 

violations from time interval are allowed up to a 

specified limit.  The permitted violations and 

penalty costs associated with them are provided 

in Table 4.  Since the problem investigated in 

Section 4.2 has an optimal solution with hard 

time window constraint, solving the same 

problem with soft time windows will result in no 

difference in terms of the final answer.  Hence, to 

illustrate the impact of soft time window 

constraints and the formulation on the solution, 

the time windows are tightened in Table 4. 

The mathematical formulation presented 

in Section 3.3 was solved using LINGO 12.0 

optimizer software on a Pentium D CPU 3.2GHz, 

and 3.25 GB of RAM.  The result obtained is 

shown in Table 5. 
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Although, the route configuration from 

Table 5 is similar to the one obtained in Section 

4.2, the objective function value is larger.  This is 

a  result  of   tightening   the  time  windows  and 

TABLE 4. TIME INTERVAL ASSIGNED TO EACH 

CUSTOMER 

Customer 

number 
1 2 3 4 

Time 

interval 
[26,26] [16,17] [20,21] [15,18] 

Upper 

limit 

violation 

allowed 

1 0.5 1.5 1 

Lower 

limit 

violation 

allowed 

0.5 0.75 1.5 1 

ρg ($) 20 10 50 30 

φg ($) 50 70 20 10 

 

TABLE 5. RESULT OBTAINED FOR TDLRP WITH 

SOFT TIME WINDOWS 

Objective Value 897.53 

Computation Time 00:01:02 

Variables with 

Value of 1 

X121, X132, X212, X241, 

X061, X062, O6, z16, z26, 

P21, P22, α11, α22, β12, β21 

 

allowing the model to violate the time intervals 

by accepting the associated penalty costs.  As 

shown in the table, α11, α22, β12, and β21 have 

values of one which implies that the lower limit 

of time windows in customers 2 and 1, and upper 

limit of time windows in customers 4 and 1 are 

violated.  From Table 4, the consequence of these 

violations is $60 which is added to the objective 

value obtained in Table 3.  The objective 

function has a value of 897.53 for the TDLRP 

with soft time window. 

 

4.4. TDLRP with Time Dependent Demand 

 

The example is similar to the one 

discussed in section 4.1 with the difference that 

the customers’ demands are not static.  Each 

customer has a unique demand function as 

presented in Table 6. 

 

TABLE 6. CUSTOMERS’ DEMAND INFORMATION 

 Initial Demand Demand Function 

1 40 40+0.2τ1 

2 25 25-0.2τ1 

3 20 20+0.3τ1 

4 10 10-0.5τ1 

 

The mathematical formulation presented 

in Section 3.4 was solved using LINGO 12.0 

optimizer software on a Pentium D CPU 3.2GHz, 

and 3.25 GB of RAM.  The result obtained is 

shown in Table 7. 

 

TABLE 7. RESULT OBTAINED FOR TDLR 

Objective Value -386.11 

Computation Time 00:10:38 

Variables with 

Value of 1 

X111, X132, X222, X241, 

X061, X062, O6, z16, z26, 

P21, P22, w2, w4 

 

The result presented in the table implies 

that there are two routes in the network.  The first 

route is 6-1-4-6 assigned to vehicle 1 with 

capacity of 50 units and the second route is 6-3-

2-6 assigned to vehicle 2 with capacity of 70 

units.  Both routes are assigned to depot 2 (node 

6).  The negative value of objective function 

shows the network profit which is $386.11. 

 For solving the MINLP presented in this 

section, LINGO optimization software was used.  

This software uses branch and bound method to 

solve the MINLP.  Other commercial packages 

such as CPLEX gives researchers more options 

for choosing their problem solving method in a 

faster amount of time.  However, CPLEX has 

limitations and cannot solve MINLP directly.  A 

MINLP should be first modified to a Mixed-

Integer Linear Programming (MILP) or a 
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quadratic formulation to be tackled by CPLEX.  

Hence in the next section of this paper, the model 

presented in Section 3.1 is first linearized and 

then different cutting approaches are tested to 

find the best solution strategy for solving the 

problem. 

 

V. LINEARIZATION AND SOLUTION 

APPROACH 
 

For solving a MILP there are several 

models developed in literature such as cutting 

algorithms, bender decomposition, lagrangian 

relaxation, etc. However, the formulation 

presented in section 3.1 is a MINLP and it is 

necessary to transform it to a MILP to be able to 

test other solution approaches. A closer look at 

the model reveals that it is in fact a constrained 

nonlinear binary programming and depending on 

the type of travel time function different 

approaches can be taken for the Linearization. 

Since, the most commonly used type of function 

in literature are discrete step functions, it is 

assumed that the travel functions are discrete step 

functions and the model is linearized accordingly. 

A general polynomial term can be presented by 

(26), 

  
j

j S

y x



   (26) 

Where  1,2,...,S n and  0,1 ,jx j S  .  

Since all xj are binary variables, y is a binary 

variable as well, and the nonlinear term presented 

in Equation 26 can be replaced by two 

inequalities according to the following theorem: 

Theorem 1: Let s S ,  

Equation   0,1j j

j S

y x x


    

where  1,2,...,S n and

 0,1 ,jx j S 
 
holds if and only if 

 

1,j

j S

x y s


  
    (27) 

0,j

j S

x sy


  
    (28) 

   0,1 , , 0,1jx j S y  
   (29) 

 

Proof: If any xj is 0 then y=0. In this case, 

Constraint 27 is extra and redundant and 

constraint 28 becomes / 1
j

j S

y x s


   which 

implies y=0 by conditions presented in 29.  If all 

xj’s are equal to 1, then y =1.  In this case 1y  , 

which implies y=1 by condition presented in 28 

and thus constraint 27 is redundant (Li and Sun, 

2006). 

By applying theorem 1, each nonlinear 

term in the objective function or the constraints 

can be linearized.  For instance, the non-linear 

term 1m gv mhvX X  existing in the objective 

function can be replaced by a new variable mghvY  

by adding two constraints.  Therefore: 

 

 

1mghv m gv mhvY X X  ; ,m D h g I J   
      

(30) 

1

1

1
; ,

2 0

m gv mhv mghv

m gv mhv mghv

X X Y
m D h g I

X X Y





  
   

          

(31)
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The same concept can be applied to all nonlinear terms.  The additional list of variables 

defined for the purpose of linearization is as follows: 

 

m mghv m ghv mvU Y y 
                  

; , ;m D g h I v V         (32)

 

1mv mvP P                         / ;m D N v V        (33) 

  
1

1 / ;
N

m v

m m

mv mvE P y s N m m D N v V

 

            (34) 

m mghv mv m mghvE U            ; ; ,m D m D m m h g I          (35) 

0mghv mv gv mhvE X X          ; ; ;m D h I g J v V         (36) 

 

mgv

g I

X


  shows whether there is a customer assigned to position m of route or not.  Hence, it 

works like a binary variable.  Thus, for simplifying the linearization of the problem mgv

g I

X


 is also 

replaced by a binary variable presented in 37. 

 

0
mgv

g I

mvX y


           0,1mvy     

 

   (37)

 

By using the new variables defined, the linearized model is presented below: 

   ( 1)

1

1

m

gh m v h m mghv hg mv mhgv

v V m D m h I g I h I g J

ghv g g g

v V g J h I g J

Min

C F t S F t

Y B q O

 
      

   

 
   

 



  

 
   

(38)

 

1
mgv

v V m D

X g I
 

            (39) 

1 ;
mgv

g I

X m I v V


             (40) 
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mgv

g I m D

g vX Y v Vd
 

            (41) 

0
mgv

v V g J m D

X
  

           (42) 

0
0

gv

v V g I

X
 

           (43) 

   
1

;
m gv mgv

g I J g I J

X X m D v V


   

            (44) 

1 1ghv
g J h I

Y v V
 

            (45) 

1g gghv
v V h I

O Y KO g J
 

            (46) 

11 ghv

v V g J h I

Y K
  

            (47) 

1

1

1
; ,

2 0

m gv mhv mghv

m gv mhv mghv

X X Y
m D h g I

X X Y





  
   

   
      (48) 

 
1

; ; ,
2 0

m ghv mv m mghv

m ghv mv m mghv

Y y U
m D m D m m h g I

Y y U

 

 

  
       

   

   (49) 

 1

1

; ; ,

( 1) 0

N

m v mv mv

m m

N

m v mv mv

m m

P y E N m

m D m D m m h g I

P y N m E



 



 


   


       

     





   

             

(50)

 

 
1

; ; ,
2 0

mv m mghv m mghv

mv m mghv m mghv

E U
m D m D m m h g I

E U





 

 

  
       

   
   (51) 

 
0

0

2
, ; ,

3 0

mv gv mhv mghv

mv gv mhv mghv

E X X
m D m D m m h g I

E X X





   
       

    
   (52) 

 , , , , 0,1mgv mghv m mghv mghv m mghvX Y U   
 

 



Shokoufeh Mirzaei and Krishna Krishnan 

Location Routing Problem with Time Dependent Travel Times 

 

 
Journal of Supply Chain and Operations Management, Volume 10, Number 1, February 2012 

 103 

 

Where, constraints (48-52) are added to 

the model for the purpose of linearization. The 

linearized model is programmed in CPLEX for 4 

different examples and the data for the examples 

are provided in Table 8. The examples are then 

solved with multiple solution strategies such as 

branch and bound, Clique cuts, GUB Cover cuts, 

Implied Bound Cuts, Gomory Fractional cuts, 

and Zero-half cuts to find the fastest method for 

solving the problem. 

 

TABLE 8. INFORMATION REGARDING THE EXAMPLES SOLVED 

Example 
# of 

customers 
# of DCs # of vehicles 

Vehicles 

Capacity 

1 4 2 2 50,70 

2 5 2 2 50,70 

3 6 2 2 50,70 

4 7 2 3 50,70,70 

 

Tables 9 to 12 show the number of cuts, 

and computation time for each solution approach. 

In the first row of the tables, value of -1 implies 

that no cutting strategy is used; 0 implies that the 

automatic setting of CPLEX for applying cuts is 

used; 1 implies that cuts are used moderately; 

and 2 implies the aggressive usage of cuts in 

generating the results.  As reflected in the tables, 

pure branch and bound has the smallest 

computational time.  Therefore, in case the 

problem sizes are small and computational times 

are not an issue, there is no need to linearize the 

model and Lingo can be an appropriate interface 

to solve the model.  This conclusion is only true 

when the problem is not large and the travel 

times are discrete step functions.  The evaluation 

of solution approaches for different types of 

travel time functions, demand functions, and 

problem size is considered as future research. 

 

TABLE 9. REULSTS OBTAINED FOR EXAMPLE #1 

 
 

TABLE 10. RESULT OBTAINED FOR EXAMPLE#2 

  

TABLE 11. RESULT OBTAINED FOR EXAMPLE#3 

 

TABLE 12. RESULT OBTAINED FOR EXAMPLE#4 
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VI. CONCLUSION 

Traffic congestion is a normal 

phenomenon especially in urban areas. Traffic 

rush hours in the morning and evening typically 

result in higher travel times.  Thus, traffic 

congestion influences the time taken to travel.  

The main drawback of existing formulations of 

TDLRP is that the waiting time at customers’ 

location is used to take care of time window 

violations.  In the formulation presented in this 

paper, the assumption of time windows and 

waiting time at customers’ location are relaxed 

and a step-by-step formulation of TDLRP for 

several scenarios has been developed.  In the 

initial formulation, the time windows are 

eliminated and a TDLRP formulation that 

eliminates the waiting time at customer locations 

is first developed.  The formulation was then 

extended to include both hard and soft time 

windows.  The model is further enhanced to 

address the issue of demand variation, - i.e. 

assuming that the demand is a function of time.  

Each of the formulations is illustrated with the 

use of an example. 

For solving the MINLP presented in 

section 3.1 using CPLEX, depending on the type 

of travel time function, different methods can be 

applied.  Since the discrete step function is the 

most common representation for travel time 

function in literature, it is assumed that the travel 

time functions are discrete step functions. By 

assuming the discrete step functions to represent 

the travel times, the MINLP can be linearized for 

faster solution in CPLEX.  For solving the MILP 

obtained, different solution strategies are applied 

including Branch and Bound, moderate and 

aggressive cut generators, etc.  The results 

obtained show that when the travel time is a 

discrete function, the pure branch and bound 

method can provide results faster than cutting 

methods.  However, as already discussed, 

depending on the type of travel time function, 

different solution methods can yield different 

computational time, and this is a subject of future 

research.  In addition, since the problem is NP-

hard, heuristic or meta-heuristic algorithms for 

solving large problems are required.  A closer 

look at constraints 42 and 43 reveal that they can 

be decoupled from route/vehicle, and hence 

column generation or bender decomposition for 

finding the exact solution of larger size problems 

is possible and can be further investigated. 
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