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We consider a continuous review inventory system that faces two different cases of demand 

processes.  In one case demand follows a compound Poisson process. In the other case 

demand is a combination of a constant deterministic component and a random component 

which follows a compound Poisson process.  We assume negligible lead time. Orders occur 

when inventory level drops to or below level zero, at which point the inventory is 

replenished to an order-up-to level S.  A level crossing approach is used to derive the steady 

state distribution of inventory level for each demand scenario.  We use the steady state 

distributions to derive the total expected cost functions and determine the optimal order-up-

to levels. We ran computational experiments and compared the optimal order-up-to levels 

from our models to the traditional EOQ. We find that the EOQ overestimates the optimal 

order-up-to level and in many cases is a poor approximation to the optimal. 
 

*Corresponding Author. E-mail address: kazoury@sfsu.edu 

 

I. INTRODUCTION 

 

The traditional EOQ model assumes that 

demand is both deterministic and uniform. 

Because of the simplicity of the EOQ, it is often 

used in practice even when demand is stochastic.  

We note that many operations management 

textbooks suggest the EOQ is a viable approach 

even when demand is uncertain. In this paper, we 

explicitly model uncertainty in demand by 

considering two cases.  One case assumes that 

demand is a compound Poisson process and will 

be referred to as the compound Poisson case or 

case (1). The other case assumes demand is a 

combination of a constant deterministic 

component (as in the classical EOQ) and a 

random component which follows a compound 

Poisson process and will be referred to as the 

mixture of demand case or case (2). This case 

represents a generalization of case (1). We note 

that there are practical reasons to incorporate a 

constant demand rate in case (2).  For example a 

firm sells their product through two different 

channels. One channel is based on long term 

supply contracts which generate the constant 

component of demand. The second channel 

represents customers with unscheduled random 

orders which generates the compound Poisson 

process. This mixture of demand processes had 

been studied by other researchers.  Presman and 

Sethi (2006) and Sobel and Zhang (2001) study 

this type of demand process and provide other 

practical examples.  

We consider a continuous review 

inventory system and assume negligible lead 

time. This assumption is often made in the 
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literature to simplify the exposition. For example, 

Cetinkaya and Lee (2000), Lee and Rosenblatt 

(1986 ),  and Thompstone  and Silver (1975) 

make this assumption.  Moreover, it is well 

known that many inventory models with non-

zero lead time can be transformed to equivalent 

models with zero lead time as mentioned in 

Bassok and Anupindi (1997). The transformation 

from a  non-zero lead time case to a zero lead 

time case is typically achieved by performing the 

analysis and setting policies that are based on  

inventory position (inventory on hand + on order 

– backlog) rather than on net inventory.  In 

addition to simplifying the analysis, the models 

that consider inventory position and zero lead 

time can provide valuable insights that will be 

applicable to the non-zero lead time models. 

Finally, it is worthwhile to note that there are 

cases where lead times are indeed negligible and 

the standard transformation to inventory position 

is not necessary. For example, consider a case 

where the supplier is located near the demand 

locations and the time needed to ship and deliver 

the product is negligible. In such a case, it would 

be reasonable and realistic to consider an 

inventory model with zero lead time.  In the 

conclusion, we will discuss the explicit modeling 

of net inventory in the presence of positive lead 

time as a direction for future research.  

Orders occur when inventory level drops 

to or below level zero, at which point the 

inventory is replenished to an order-up-to level S.  

This policy has been shown to be optimal for 

demand processes in both cases we study here, 

Presman and Sethi (2006).  

As is well known, the EOQ is derived 

from an estimate of the cost of ordering and 

holding inventory. In our setting, we need an 

estimate of the expected value of these costs.  In 

order to do this, we need the steady state 

distribution of inventory levels under the order-

up-to level policy as described above. We use a 

methodology called level crossing to derive the 

steady state distribution of inventory levels.  

Level crossing methods were developed 

to obtain probability distributions in stochastic 

models. Brill and Posner (1977, 1981) use the 

level crossing approach to analyze queues.  They 

derive the stationary probability distribution of 

waiting time in M/M/R queues with first come 

first served service discipline.  Level crossing is 

an important component of the more general 

approach called the system point method. This 

method analyzes a stochastic process {I(t), t ≥ 0}, 

where t represents time and I(t) is the state of the 

process.  The state space is continuous.  The 

process evolves over time whereby the state 

undergoes upward or downward jumps that occur 

according to a Poisson process. The upward and 

downward jumps are independent of each other. 

Moreover, the system point method examines a 

sample path of the process that represents a 

typical realization of the stochastic process over 

time.  Based on the sample path, one usually can 

develop equations in terms of the stationary 

distribution of the system state.  The derivation 

of the equation is intuitive and is an extension of 

the rate in = rate out principle. An overview of 

this method has appeared in Brill (1996, 2000). 

There has been some work that extended 

the level crossing approach from its initial 

queuing application to the case of continuous 

review inventory models.  The first such work by 

Azoury and Brill (1986) derives the steady state 

distribution of inventory level while also 

modeling decay in inventory level.  Azoury and 

Brill (1992) study the case of continuous review 

inventory with random lead time and apply the 

level crossing method to derive the stationary 

distribution of net inventory. Brill and Chaouch 

(1995) consider the EOQ model with variations 

in demand rate at random points in time. 

Mohebbi and Posner (1999) use level crossing 

methodology to derive the stationary distribution 

of inventory level under continuous review with 

lost sales and emergency orders. They also derive 

exact expressions for the average cost rate 

functions. Berman et al (2005) consider a 

production/inventory model with different 

clearing policies and issuing policies. They 

derive the stationary distribution of the buffer 

inventory using the level crossing approach.   
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Other approaches to stochastic continuous 

review systems have considered a variety of 

models for the random demand process including 

the compound Poisson process and the general 

renewal process for demand arrivals with general 

distribution for demand sizes.  For background, 

see Tijms (1972), Sivazlian (1974), Richards 

(1975), Sahin (1979), Federgruen (1983), and 

Altiok (1989). The analysis in these earlier works 

developed stationary distributions of inventory 

level under an assumed order policy typically of 

the (s,S) type. In some instances, expressions for 

expected cost functions and optimal policy 

parameters were also derived.  The approaches 

and results have relied on the fact that orders are 

triggered only at demand arrival epochs. The 

analysis often used classical renewal theory 

methodology as in Sahin (1979), and Altiok 

(1989). As we shall see later, orders for our case 

(2) can be triggered at points in time other than 

demand arrival epochs. Therefore, using classical 

renewal theory is not an option for case (2). 

Earlier work using level crossing was 

mostly focused on characterizing the steady state 

distribution of inventory levels and did not 

analyze the cost functions and the optimal policy. 

Preliminary work that looked at the cost 

functions associated with the two cases analyzed 

in this paper was done by Azoury and 

Udayabhanu (2006, 2007). This paper is an 

extension of that work. We have added full 

factorial numerical studies, sensitivity analyses, 

and new insights on when the classical EOQ is a 

good or poor approximation to the optimal. In 

addition, we have identified a lower bound on the 

total expected cost for case (2). 

 The rest of this paper is organized as 

follows. In section 2, we develop the model for 

the compound Poisson case and give an 

expression for the optimal order quantity. In 

section 3, we present numerical results and 

discuss sensitivity analysis for the compound 

Poisson case. In section 4, we develop the model 

for the case with a mixture of demand processes, 

derive the steady state distribution of the 

inventory level, and give the expected cost 

function. We also present an approximation to 

the optimal order-up-to level and give a lower 

bound for the expected cost function. In section 

5, we present numerical results and discuss 

sensitivity analysis for the case with the mixture 

of demand processes. In section 6, we present 

concluding remarks. 

 

II. COMPOUND POISSON DEMAND 

 

 For this case, demands arrive according to 

an exponential distribution with rate λ and each 

demand size is exponential with mean 1/μ. 

Replenishment is instantaneous and 

replenishment orders are issued when inventory 

level goes down to zero. In the following we 

describe how the inventory level evolves over 

time within an order cycle. At the start of a cycle, 

the inventory level is S.  It stays at that level for a 

random interval of time with mean 1/ λ until the 

first demand occurs.  At that point the inventory 

level drops by a random amount representing the 

demand size.  The mean demand size is 1/μ. The 

inventory remains at that level until the next 

demand occurs and then drops by another 

random amount.  This process continues until the 

total realized demand is greater than or equal to 

S,  at which point, the inventory level has 

reached level zero or below and the cycle ends. 

An order is triggered to bring the inventory level 

up to S.  In this case, the order quantity typically 

varies from cycle to cycle.  The sample path for 

the inventory level is given in Fig. 1 below. 

 We lay out the approach we follow to 

solve and analyze our model. The inventory level 

is a stochastic process {I(t), t ≥ 0} because of the 

way we model the demand. We are interested in 

the steady state distribution of the inventory level 

as t → ∞.  To get this distribution, a typica l  
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FIGURE 1. Sample Path for the Inventory Level 

(Compound Poisson Demand) 

 

sample path representing a realization of the 

inventory level must be generated.  With the 

sample path in hand, the level crossing 

methodology can be applied to develop equations 

in terms of the stationary pdf of the inventory 

level.  These equations must be solved to obtain 

the exact form of the stationary pdf of inventory 

level. One can then write the expected total cost 

function in terms of the stationary pdf and use 

standard optimization methods to determine the 

optimal order-up-to level. In the next section, we 

show how to use the sample path and develop the 

analytical results.  

 

2.1 Derivation of the Steady State Distribution 

of Inventory Level 

 

In this section, we apply the level crossing 

technique to derive the steady state distribution 

of inventory level. We use the following 

notation: 

 

S =   Order up to level 

h = Inventory holding cost per unit of 

inventory per unit time 

C =    Fixed cost per order 

λ =    Demand arrival rate per unit time 

1/μ = Mean demand size 

g(x) = Stationary pdf of inventory level x 

ПS  = Probability that inventory level equals 

S 

 

Referring to the sample path in Fig. 1, we 

write model equations for ПS and g(x) by 

equating up-crossing rates to down-crossing 

rates. 

Level S is an atom with probability ПS.  

The rate out is shown below on the left hand side 

of equation (1) as the product of the demand rate 

λ and the probability of being in state S. This 

product represents the rate of leaving state S. The 

inventory level returns to state S each time the 

inventory drops below level zero.  So the rate 

into state S is equal to the down-crossing rate of 

level zero, which is shown on the right hand side 

of equation (1).  The first term on the right hand 

side is the product of the demand rate and the 

probability of being in state S and  having a 

demand size bigger than S, thus bringing the 

inventory level below zero. The second term has 

a similar interpretation.  It is the product of the 

demand rate and the probability of being in any 

state y between zero and S and having a demand 

jump bigger than y. 
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We now equate the down-crossing and 

up-crossing rates for any inventory level x 

between 0 and S. The first term on the left hand 

side is the rate of down-crossing level x from 

state S, while the second term is the rate of 

down-crossing level x from any level y, where x 

< y < S.  The right hand side, as mentioned 

above, is the down-crossing rate of level zero, 

which equals the up-crossing rate of all levels as 

a consequence of the replenishment policy. 

 

 

   (2) 

 
 The distribution of the inventory level 

must satisfy the normalizing condition shown in 

equation (3) below. 
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To solve for g(x), 0 < x < S, we take the 

derivatives of both sides of equation (2) with 

respect to x. This yields equation (4) below. Note 

that the right hand side of equation (2) is a 

constant, and hence, its derivative is zero. 

 

 

 (4) 

 

Rearranging terms in equation (4) and using the 

relationships in equations (1) and (2), the density 

g(x) is given by 

 

 

  (5) 

 

One can solve for ПS and g(x), 0<x<S, by 

applying the relationship in equation (5) and the 

normalizing condition in equation (3).  The 

continuous part of the distribution g(x) is uniform 

and is given by 
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The probability at the atom S is given by 

 

.
1

1

SS 


    (7) 

 
The expected number of orders per unit time is 

equal to the rate into state S and is given by 

.
1 SS 







 
Therefore the cycle time between 

orders is equal to 


S1
. 

 

2.2  Derivation of the Expected Cost and the 

Optimal Order-up-to Level 

 

The expected total cost function ETC per 

unit time is the sum of the expected order cost 

and the expected inventory holding cost and is 

shown below in equation (8). 
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Using (6) and (7) above, we can write the ETC as 

follows: 
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The first and second derivatives of this expected 

cost function with respect to S are as follows: 
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The second derivative is positive when 

 

.2 hC        (12) 

 

Thus the total expected cost function is convex in 

S when inequality (12) is satisfied. 

The optimal S that minimizes the total 

expected cost can be determined by setting the 

first derivative of ETC in equation (10) equal to 

zero.  The first order condition is a quadratic in 

S.  Solving for the optimal S yields 

 

 

.
1

2

12*






h

C
S

    (13) 

 
The optimal value for S* is positive when the 

condition λC/h > 1/μ is satisfied. If λC/h < 1/μ, 

then set S*=0. The rationale is that the inequality 

λC/h < 1/μ implies very lumpy demand. By 

lumpy demand we mean infrequent arrivals 

(small λ values) and large demand sizes (small μ 

values). When demand is very lumpy, the 

optimal decision would be to not hold any 

inventory, but rather to wait until demand is 

realized, and then place an order. 

  The widely used classical EOQ model 

assumes a deterministic and constant demand 

rate D per unit time. The ratio λ/μ in the 

stochastic model represents the expected total 

demand per unit time. Thus, the classical EOQ 

model represents the average case scenario for 

our stochastic model if we set D equal to λ/μ. 

The EOQ model with D equal to λ/μ can be 

viewed as an approximation to the stochastic 

model that ignores the effect of randomness in 

demand. Note that the total cost per unit time for 

the classical EOQ model is:

  

2

hQ

Q

CD
TC 

    (14) 

 
where Q represents both the order quantity and 

the order up to level.  In this case, the optimal 

order up to level is given by: 

 

.
2*

h
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Q 

      (15) 

 

Replacing λ/μ with D in equation (13), we get

  

,
1

)
2

12
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   (16) 

 
which is smaller than Q

*
. Note that the difference 

is more significant for small μ. This is expected 

since the size of each demand jump is larger for 

small μ. So this suggests that the EOQ model 

might not be a good approximation when demand 

jumps are large. 

 

III. NUMERICAL RESULTS FOR 

COMPOUND POISSON DEMAND 

 

We have designed a full factorial 

numerical study varying three factors  C/h, λ, and 

μ over three settings each resulting in a total of 

27 trials.  Examination of the total cost 
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expressions ETC in (9) and TC in (14) indicate 

that the ratio C/h is the relevant factor rather than 

the individual values for C (fixed cost per order) 

and h (holding cost per unit per unit time), hence, 

we fixed C at 50 and varied h. Table 1 below 

shows the results for the 27 trials. S
*
 and Q

* 
are 

the optimal order-up-to levels for the stochastic 

and the classical EOQ models, while ETC
*
 

represents the optimal expected total cost under 

S*. ETC(Q
*
) gives the expected total cost of the 

stochastic model evaluated at the optimal EOQ, 

namely, Q
*
. In the last column labeled % 

Difference, we show the percentage cost penalty 

from using the EOQ relative to optimal, namely, 

(ETC(Q
*
) - ETC

*
)/ ETC

*
. 

 

TABLE 1. Numerical Results for the Compound Poisson Demand Case 

 

Trial C/h λ μ S* Q* ETC* ETC(Q*)
% 

Difference

1 25 10 0.25 40.5 44.7 89.1 89.4 0.4%

2 25 20 0.25 59.1 63.2 126.2 126.5 0.2%

3 25 50 0.25 95.9 100.0 199.8 200.0 0.1%

4 25 10 0.17 48.4 54.8 108.9 109.5 0.6%

5 25 20 0.17 71.2 77.5 154.4 154.9 0.3%

6 25 50 0.17 116.3 122.5 244.6 244.9 0.1%

7 25 10 0.02 100.0 158.1 300.0 316.2 5.4%

8 25 20 0.02 167.9 223.6 435.9 447.2 2.6%

9 25 50 0.02 300.0 353.6 700.0 707.1 1.0%

10 12.5 10 0.25 27.4 31.6 125.5 126.5 0.8%

11 12.5 20 0.25 40.5 44.7 178.2 178.9 0.4%

12 12.5 50 0.25 66.6 70.7 282.4 282.8 0.2%

13 12.5 10 0.17 32.3 38.7 153.0 154.9 1.2%

14 12.5 20 0.17 48.4 54.8 217.7 219.1 0.6%

15 12.5 50 0.17 80.4 86.6 345.5 346.4 0.2%

16 12.5 10 0.02 50.0 111.8 400.0 447.2 11.8%

17 12.5 20 0.02 100.0 158.1 600.0 632.5 5.4%

18 12.5 50 0.02 194.9 250.0 979.8 1000.0 2.1%

19 5 10 0.25 15.6 20.0 196.0 200.0 2.1%

20 5 20 0.25 24.0 28.3 280.0 282.8 1.0%

21 5 50 0.25 40.5 44.7 445.4 447.2 0.4%

22 5 10 0.17 17.7 24.5 237.5 244.9 3.1%

23 5 20 0.17 28.1 34.6 341.1 346.4 1.5%

24 5 50 0.17 48.4 54.8 544.4 547.7 0.6%

25 5 10 0.02 0.0 70.7 500.0 707.1 41.4%

26 5 20 0.02 36.6 100.0 866.0 1000.0 15.5%

27 5 50 0.02 100.0 158.1 1500.0 1581.1 5.4%  
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The results show that as the demand 

pattern gets more lumpy, the performance of the 

EOQ deteriorates relative to the optimal. There 

are two parameters that contribute to lumpy 

demand. When  μ gets smaller the demand size 

gets larger (more lumpy demand). When λ gets 

smaller, there are fewer arrivals (more lumpy 

demand).  It is not surprising that the EOQ 

becomes more suboptimal when demand is more 

lumpy because we move away from the 

assumptions of the EOQ. We can see the effect 

of lumpiness due to μ by examining trials 19, 22, 

and 25. These trials have different μ values but 

the same C/h and λ values. Of the three trials, 

trial 19 has the largest μ value and has the best 

performance for the EOQ while trial 25 has the 

smallest μ value and has the worst performance.  

As for the effect of lumpiness due to λ, consider 

trials 25, 26, and 27. These trials have different λ 

values but the same C/h and μ values. Of the 

three trials, trial 27 has the largest λ value and 

has the best performance for the EOQ while trial 

25 has the smallest λ value and has the worst 

performance. As noted earlier, the EOQ order-

up-to level is more than the optimal S*. An 

examination of the derivatives of Q* and S* with 

respect to C/h shows that they both decrease as 

C/h decreases.  This is expected. However, the 

rate of decrease for Q* is less than that of S*. 

Hence, when C/h gets smaller for a given λ and 

μ, the performance of the EOQ gets worse. In 

Table 2 we summarize the effect of changes to 

the three parameters C/h, λ, and μ on the 

performance of the EOQ relative to the optimal.

  

Table 2. Summary of Changes in the % Difference in Costs 

 

 C/h 

↓ 

λ 

↓ 

μ 

↓ 

% Difference 

(ETC(Q
*
) - ETC

*
)/ ETC

*
 

↑ ↑ ↑ 

 

A computational comparison based on 

trial 16 was done to show an interesting 

relationship between the two cost functions (ETC 

andTC). The expected total cost ETC and the 

total cost TC were computed for values of Q 

ranging from 25 to 300.  These cost functions are 

shown in Fig. 2 below. Based on these results, 

we note that the EOQ approach is overestimating 

cost for Q below Q* and underestimating cost for 

Q above Q* when compared to the stochastic 

expected cost ETC.  The two costs intersect at 

Q*. Therefore, the only time the EOQ model 

measures the cost correctly is when Q = Q*. 

Moreover, the total EOQ cost rises less steeply 

than the stochastic expected total cost for high Q 

values and the opposite situation prevails for low 

Q values. 

Trial 25 is worth some further comments. 

The parameters C/h, λ and μ were the lowest of 

all the trials. This is the case for the most lumpy 

demand with the most infrequent arrivals and the 

largest demand sizes. This trial also has the 

highest holding cost.  The S* value for this case 

is zero.  The policy calls for waiting until 

demand occurs and then ordering to satisfy the 

demand.  This happens because demand is so 

lumpy with a high holding cost that it is not 

worth holding inventory in anticipation of 

infrequent and highly variable demand. This is 

clearly an extreme case but provides insight 

regarding the effect of the randomness of the 

demand process on the optimal order-up-to level. 

 To further illustrate the effect of lumpy 

demand, we ran 10 sub-trials of trial 25 where we 

fixed D =λ/μ = 500 by varying λ and μ as shown
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FIGURE 2. ETC and TC for Trial 16. 

 

in Table 3 below. The first row in the table is 

trial 25. Moving down this table from the first 

row to the last row, the degree of lumpiness in 

demand decreases and the EOQ becomes a better 

estimate for the optimal order-up-to level.  

Moreover, the % difference in costs (ETC(Q*) – 

ETC*)/ETC* decreases as the lumpiness in 

demand decreases. 

An interesting observation in Table 3 is 

that ETC(Q*) is the same across all sub-trials.  

This can be explained by what we have seen in 

Fig. 2, namely that ETC and TC intersect at the 

EOQ and that TC only depends on D which is 

constant across all these sub-trials. 

 

TABLE 3. Sub-trials of Trial 25 

 

λ μ S* Q* ETC* ETC(Q*)

% 

Difference 

in Costs

10 0.02 0.0 70.7 500.0 707.1 41.4%

12.5 0.025 18.3 70.7 583.1 707.1 21.3%

15 0.03 29.0 70.7 623.6 707.1 13.4%

20 0.04 41.1 70.7 661.4 707.1 6.9%

25 0.05 47.8 70.7 678.2 707.1 4.3%

37.5 0.075 56.1 70.7 694.4 707.1 1.8%

50 0.1 60.0 70.7 700.0 707.1 1.0%

75 0.15 63.7 70.7 704.0 707.1 0.4%

100 0.2 65.5 70.7 705.3 707.1 0.3%

125 0.25 66.6 70.7 706.0 707.1 0.2%

250 0.5 68.7 70.7 706.8 707.1 0.0%  
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IV. MIXTURE OF DETERMINISTIC AND 

COMPOUND POISSON DEMANDS 

 Here we consider a continuous review 

inventory system where demand is a combination 

of two components: a constant deterministic part 

and a random part. The deterministic component 

has constant rate κ, and is identical to the 

modeling of demand in the classical EOQ 

approach. The random component follows a 

compound Poisson process.  Demand arrivals 

occur exponentially with rate λ; each demand 

size is random and follows an exponential 

distribution with mean 1/μ. We assume 

negligible lead time. Orders occur when 

inventory level drops to or below level zero, at 

which point the inventory is replenished to level  

S. Fig. 3 below shows the sample path of 

inventory level. If there is no random component 

to the demand process, this reduces to the 

classical EOQ model. 

 
 

FIGURE 3. Sample Path for the Inventory Level 

(Mixture of Deterministic and Compound Poisson Demands) 

 

The deterministic component of the 

mixed demand processes could trigger orders at 

points in time other than the Poisson jump 

epochs.  We note that such an ordering regime 

does not permit use of the standard renewal 

theory approaches to derivation of steady state 

distributions of inventory level. However, the 

level crossing method can easily handle the 

added complexity brought on by the 

deterministic component of demand and derive 

the needed steady state distribution of inventory 

level. 

 

4.1 Derivation of the Steady State Distribution 

of Inventory Level 

 

We use the same notation as in the 

compound Poisson case with the addition of κ = 

constant deterministic demand rate. Here, the 

density is continuous with g(x) representing the 
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stationary pdf of inventory level x, 0<x<S. 

Referring to Fig.3, the down-crossing rate of 

level x is 

 

.)(
)(

)( 



S

x
dyyg

xy
exg




  (17) 

 
The up-crossing rate of level x equals the down-

crossing rate of level 0, which is 
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   (18) 

 
Equating down-crossing and up-crossing rates of 

level x gives 

 

 

                     (19) 

The above equation can be solved for g(x) 

using standard differential equations. Since the 

details of deriving the steady state distribution 

were given for the case of compound Poisson, we 

show the details for this case in the Appendix.  

This yields the stationary pdf of inventory level x 

as 

 

)]1)(/([
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                                           0<x<S                 (20) 

 

where .)/(  M  Note that the density g(x) 

is a function of the order-up-to level S. 

In Fig. 4 we show the density function 

g(x) for the following parameters: C=50, h=8, λ 

= 10, μ = 0.02, and κ = 100. S is set at 40 for this 

illustration. While in the compound Poisson case, 

the density was uniform with a point mass at S, 

the density here is continuous and the density 

increases as x increases towards the upper limit 

S. 

 

 
 

FIGURE 4. Density Function of the Inventory Level 
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4.2  Derivation of the Expected Cost and the 

Optimal Order-up-to Level 

 

The expected total cost of ordering and holding is  

 

E .)()(
0



S

dxxxghSgCTC 

   (21) 

Substituting for g(x) in equation (21), we can 

write the expected total cost as 

 

 (22) 

 

Note that the cycle time in this case is given by 
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The minimization of the above cost function (22) 

cannot be solved in closed form.  However, the 

optimal value S* that minimizes ETC can be 

determined numerically using standard 

optimization tools.  

We develop an approximation to ETC 

that assumes  0MSe . This is a reasonable 

assumption since both M and S are expected to 

be fairly large for most typical applications.  By 

substituting 0 for 
MSe  in the expected total cost 

(22), we get the following approximation 

 

      (23) 

 

A closer inspection of ETC in (22) and ETCapprox 

in (23) shows that ETCapprox is a lower bound for 

ETC. Let Ŝ be the value of S that minimizes 

ETCapprox. We show in the Appendix that the 

approximate cost function ETCapprox has a similar 

form to that of the classical EOQ model. By 

using the transformation )/( MSW  in 

equation (23), we get the following expression 

for ETCapprox. 

 

 
                                                                        (24) 

Note that under the condition that 

 

(25) 

 

the approximate cost function ETCapprox in (24) 

has the same form as the total cost for the 

classical EOQ model if one interprets W as the 

order quantity, the first term as the ordering cost 

per unit time and the second term as the average 

holding cost per unit time.  

The optimal W that minimizes the above 

approximate total cost function can be obtained 

by the standard square root formula typically 

applied for EOQ formulations. Hence, by the 

above transformation, the value Ŝ  that minimizes 

the approximate cost function (24) is given by 

the following closed form solution. 

 

  (26)  

 

This closed form formula assumes that 

the condition (25) above holds. The value for Ŝ is 

positive when the condition (1+ μκ/ λ )
2
(λ C/h) > 

1/μ is satisfied.  This condition is not satisfied 

when λ, μ, and κ are very small (very lumpy 

demand).  This is similar to the condition in case 

(1) to ensure that S* is positive. 

Note that the average demand rate is 

equal to κM/μ. We can compare Ŝ to the EOQ by 

substituting D for κM/μ in equation (26). We get  

 

(27) 

 

 which is smaller than the EOQ in (15). 

 

V. NUMERICAL RESULTS FOR THE 

MIXTURE OF DEMAND PROCESSES 
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 We have designed a full factorial 

numerical study varying four factors  C/h, λ, μ, 

and κ. C/h was varied over three settings and λ, 

μ, and κ were varied over two settings each, 

resulting in a total of 24 trials.  As in the 

previous case, the ratio C/h is the relevant factor 

rather than the individual values for C and h, 

hence, we fixed C at 50 and varied h at values 2, 

8 and 10. Table 4 below shows the results for the 

24 trials.  
 

For each selection of parameter values, 

we performed the following:
 

 

TABLE 4. Numerical Results for the Mixture of Deterministic and Poisson Demands Case  

Trial C/h λ μ κ S* Ŝ Q* ETC* ETC(Ŝ) ETC(Q*)

% 

difference 

in costs   

S-hat vs 

Optimal

% difference 

in costs 

EOQ vs 

Optimal

1 25 10 0.02 10 102.6 102.6 159.7 303.3 303.3 40.6 0.0% 5.1%

2 25 10 0.02 100 124.4 124.4 173.2 332.1 332.1 4.6 0.0% 3.3%

3 25 100 0.02 10 448.1 448.1 500.5 996.0 996.0 144.4 0.0% 0.5%

4 25 100 0.02 100 453.5 453.5 505.0 1005.0 1005.0 14.6 0.0% 0.5%

5 25 10 0.2 10 50.4 50.4 54.8 109.1 109.1 15.9 0.0% 0.3%

6 25 10 0.2 100 84.9 84.9 86.6 173.0 173.0 2.6 0.0% 0.0%

7 25 100 0.2 10 154.7 154.7 159.7 319.2 319.2 47.4 0.0% 0.0%

8 25 100 0.2 100 169.0 169.0 173.2 346.3 346.3 5.2 0.0% 0.0%

9 6.25 10 0.02 10 13.2 13.2 79.8 498.1 498.1 51.1 0.0% 27.6%

10 6.25 10 0.02 100 35.8 29.5 86.6 576.3 580.5 6.2 0.7% 16.5%

11 6.25 100 0.02 10 195.3 195.3 250.2 1961.6 1961.6 215.7 0.0% 2.1%

12 6.25 100 0.02 100 198.5 198.5 252.5 1979.9 1979.9 21.8 0.0% 2.0%

13 6.25 10 0.2 10 22.8 22.8 27.4 215.5 215.5 23.8 0.0% 1.3%

14 6.25 10 0.2 100 41.5 41.5 43.3 345.1 345.1 3.9 0.0% 0.1%

15 6.25 100 0.2 10 74.8 74.8 79.8 637.5 637.5 71.2 0.0% 0.2%

16 6.25 100 0.2 100 82.3 82.3 86.6 691.7 691.7 7.7 0.0% 0.1%

17 5 10 0.02 10 6.3 2.0 71.4 512.4 586.0 59.2 14.4% 38.6%

18 5 10 0.02 100 29.9 18.1 77.5 618.5 656.4 6.9 6.1% 20.5%

19 5 100 0.02 10 168.3 168.3 223.8 2181.7 2181.7 235.0 0.0% 2.6%

20 5 100 0.02 100 171.2 171.2 225.8 2202.3 2202.3 23.7 0.0% 2.5%

21 5 10 0.2 10 19.8 19.8 24.5 239.9 239.9 26.0 0.0% 1.6%

22 5 10 0.2 100 36.9 36.9 38.7 385.5 385.5 4.2 0.0% 0.1%

23 5 100 0.2 10 66.3 66.3 71.4 712.4 712.4 77.9 0.0% 0.2%

24 5 100 0.2 100 73.1 73.1 77.5 773.0 773.0 8.5 0.0% 0.1%  
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 Computed the optimal S* via a non-linear 

optimization of the exact total cost function 

ETC in (22).   

 Computed the approximate order-up-to level Ŝ 

from the closed form formula in equation (26).  

 Computed the EOQ by using D =  )/(  

as the total demand rate. 

 Computed the expected total cost ETC* at the 

optimal S*, the expected total cost ETC(Ŝ) at 

the order-up-to level Ŝ, and the expected total 

cost ETC(Q*) at the EOQ order-up-to level 

Q*. 

 In the second to last column in Table 4, we 

show the percentage of cost penalty if one 

uses Ŝ instead of S*, namely, (ETC(Ŝ )- 

ETC
*
)/ ETC

*
. 

 In the last column of Table 4, we show the 

percentage of cost penalty if one uses Q* 

instead of S*, namely, (ETC(Q
*
) - ETC

*
)/ 

ETC
*
. Based on these results we make the 

following observations. 

 In most cases Ŝ is equal to S*.  In trials 10, 17, 

and 18, Ŝ differs from S*. For these trials the 

term e
-MS

 is not negligible. Since M = λ/κ + μ, 

M is small when λ is small, κ is large and μ is 

small.  In trials 10 and 18 the parameters λ and 

μ are small and κ is large making M small and 

the term e
-MS

 not negligible. In trial 17, λ and 

μ are small and κ is also small. This makes the 

deterministic part of the demand very small 

and the stochastic part of the demand 

infrequent and very lumpy. For such a case the 

S values in the neighborhood of the optimal S 

value are small making the term e
-MS

 not 

negligible.  In most cases we can conclude 

that Ŝ is an excellent approximation to S* and 

is very easy to compute.  

 Note that as κ increases M decreases, and for a 

given S, the term e
-MS

 gets larger and may not 

be negligible. The approximation Ŝ is derived 

by assuming that e
-MS

 is negligible. Therefore, 

at first glance, it might seem that as κ 

increases the performance of the 

approximation Ŝ will become worse. This is 

not the case because we have a different 

demand process for different values of κ and 

the cost function ETC depends on κ not just 

through M. Hence, as κ increases, the 

performance of the approximation Ŝ relative 

to the optimal S* could be better or worse. For 

example, trials 9 and 10 had all the same 

parameters expect for κ, with κ =10 for trial 9 

and κ =100 for trial 10. The approximation Ŝ 

did worse in trial 10 (larger κ) than in trial 9 

(smaller κ) . On the other hand, trials 17 and 

18 also had the same parameters expect for κ, 

with κ =10 for trial 17 and κ =100 for trial 18. 

The results show an opposite pattern where 

the approximation in trial 18 (larger κ) 

performed better than in trial 17 (smaller κ). 

 In all cases the EOQ is larger than S* and is 

not as good an approximation as Ŝ. It is 

especially poor for low values of μ.  Note that 

the EOQ simplifies the modeling of the 

random component of demand by treating it as 

constant demand with rate . This 

simplification may not have a serious impact 

when μ is large because demand jumps are 

small. However, when μ is small the 

simplification of an EOQ approximation can 

lead to large deviations from the optimal 

order-up-to level S*. 

 The sensitivity analysis of the % difference in 

costs of the EOQ vs optimal with respect to 

changes in the parameters is similar to that of 

the compound Poisson case discussed earlier. 

In Table 5, we summarize the effect of 

changes to the four parameters C/h, λ, μ, and κ 

on the performance of the EOQ relative to the 

optimal. 
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Table 5. Summary of Changes in the % Difference in Costs 

 C/h 

↓ 

λ 

↓ 

μ 

↓ 

κ 

↓ 

% Difference 

(ETC(Q
*
) - ETC

*
)/ ETC

*
 

↑ ↑ ↑ ↑ 

 

A computational comparison based on 

trial 10 was done to explore the relationship 

between the three cost functions ETC, ETCapprox, 

and TC. In Fig. 5 below we show all three cost 

functions using the parameters in trial 10 for 

values of Q ranging from 5 to 125.  First, note 

that the relationship between ETC and TC that 

we saw in the compound Poisson case does not 

carry over to this case. Recall that in the 

compound Poisson case, the two costs ETC and 

TC intersect at Q*.  In contrast, the intersection 

of these two costs is not at Q*, but it is close. 

(Q* = 86.6. and the two costs ETC and TC 

intersect at 95.3). As for the relationship between 

ETC and ETCapprox, the approximate expected 

cost ETCapprox is a lower bound to ETC. 

Moreover, these two costs are essentially the 

same except at very low values of the order-up-to 

quantity. This relationship holds in other 

parameter scenarios and is not surprising given 

that the approximation was made by removing 

the term e
-MS

 which is not negligible when S is 

small enough. 

Trial 17 is worth special attention. It has 

the lowest values for the four parameters and the 

worst performance of the Ŝ and the EOQ vs the 

optimal. In this trial, S* =6.3, Ŝ = 2 and Q* = 

71.4. For this particular case, it is optimal to only 

hold inventory for the deterministic part of the 

demand.  The random component of the demand 

has infrequent arrivals and large demand sizes 

and to a large extent, this random demand is 

fulfilled when it occurs rather than from 

inventory.  

 

 

Order-up-to Level 

FIGURE 5. ETC, ETCapprox and TC for Trial 10. 
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TABLE 6. Sub-trials of trial 17 

 

 
 

To further illustrate the effect of lumpy 

demand, we ran 10 sub-trials of trial 17 where we 

fixed D =λ/μ + κ = 510 by varying λ, μ and κ as 

shown in the table below. The first row in the 

table is trial 17. Moving down this table from the 

first row to the last row, the degree of lumpiness 

in demand decreases and both Ŝ and the EOQ 

become better estimates for the optimal order-up-

to level.  Moreover, the % differences in cost for 

both Ŝ versus the optimal S
*
 and the EOQ versus 

the optimal S
*
 decreases as the lumpiness in 

demand decreases. Note that it takes just a slight 

decrease in demand lumpiness from Trial 17(row 

1) to the sub-trial in row 2 to make Ŝ equal to S
*
. 

 

VI.  CONCLUSION 

 

In this paper, we have used the level crossing 

approach to derive the exact form of the steady 

state distribution of inventory level for cases of 

random demand: (1) a compound Poisson 

process and (2) a mixture of deterministic and 

compound Poisson. For case (1), we derived 

closed form expressions for the expected total 

cost per unit time and the optimal order-up-to 

level S*. For case (2), an exact expression for the 

expected total cost function was also derived.   

Minimization of the exact expected cost function 

cannot be solved in closed form, but can be 

minimized by a using a non-linear optimization 

tool to determine the optimal order-up-to level 

S*.  We proposed an approximate expression for 

the expected total cost that is easy to minimize 

with a closed form formula that yields an 

approximate order-up-to level Ŝ.  The cost 

approximation is a lower bound to the expected 

cost function.  The approximate order-up-to level 

Ŝ is an excellent approximation to S* under 

many parameter scenarios. The approximation 

deteriorates in extreme scenarios of very lumpy 

demand 

In practice, when the EOQ approach is used 

in an environment of random demand, the EOQ 

quantity is based on the average scenario for the 

random demand realization. To compensate for 

assuming the average scenario, one might tend to 

increase the EOQ to accommodate the 

randomness. However, our findings show that 

the EOQ overestimates the optimal order-up-to 

level S*.  So, any attempt to increase the EOQ in 

order to accommodate the randomness in 

demand actually makes the solution worse. 

Therefore, we recommend using S* for case (1) 
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and Ŝ for case (2). Both are in closed form and 

very easy to compute. 

In this paper, we presented results on 

inventory policies by using the steady state 

distribution of net inventory when lead time is 

negligible. In future work, we plan to extend this 

research to determine inventory policies that use 

the steady state distribution of net inventory with 

positive lead time. In this case, the policy is of 

the (s,S) form. We also plan to study the case of 

continuous replenishment (in-house production). 

We feel that the level crossing approach provides 

a promising tool to derive steady state 

distributions of inventory levels in these 

extensions. 
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APPENDIX 

 

Derivation of the steady state distribution of the inventory level for the mixture of demand case.  

Equating down-crossing and up-crossing rates of level x gives 

.
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Taking the derivative of both sides of (A1) with respect to x and rearranging terms we get 

 

.
0

)()0()()()( 



S

dyyg
y

egxgxg










  (A2) 

This is a first order differential equation and using the standard solution approach we obtain 
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where A is a constant that will be determined next.  

 

Note that equating the down-crossing and up-crossing rates for level S gives 
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Replacing x with S in the above, we obtain 
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Let 



M ; substituting for A and M in equation (A5), we can write the density for inventory at 

level x as 
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The expression for g(S) is obtained using the normalizing condition  

S

dxxg

0

1)( which gives 

.

)1(

)(
MSe

M
S

M
Sg










 
 

So the steady state density for inventory level x, 0 ≤ x ≤ S, is obtained by substituting the above 

expression for g(S) in (A7)  

 

.
)]1)(/([

])/(1[
)(

)(

MS

xSM

eMS

e
xg













         (A8) 

 

Derivation of the expected total cost function. 

 

The expected total cost of ordering and holding is  

.)()(
0



S

dxxxghSgCETC    (A9) 

 

Substituting (A8) in (A9) and applying standard integration steps including integration by parts, we 

can write the expected total cost as  

 

.
)]1)(/([

)}]1)(/()/()2/{()/[( 22

MS

MS

eMS

eMSMShMC
ETC













 (A10) 

Derivation of the approximate closed form formula for the “order up to level” 

 

Assuming that 0MSe  and substituting 0 for 
MSe  in ETC (A10), the approximate cost function is  

 

.
)]/([

)}]/()/()2/{()/[( 22

MS

MSMShMC
ETCapprox








   (A11) 

 

Note that    222
/

2

1
/

2

1
/

2

1
MMSSMS   . 

 

Adding and subtracting  2/
2

1
M  to the numerator of approxTC  and completing the square, we can 

write the numerator as    222 /
2

/
2

// M
h

MS
h

mhMC   . 

Letting )/( MSW  , we get 
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.
2

)/)(2/()/()/( 22 hW

W

MhMhMC
ETCapprox 





  (A12) 


