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We consider a nonlinear version of the Uncapacitated Facility Location Problem (UFLP). The total 
cost in consideration consists of a fixed cost to open facilities, a travel cost in proportion to the 
distance between demand and the assigned facility, and an operational cost at each open facility, 
which is assumed to be a concave nondecreasing function of the demand served. Thus we call the 
problem Uncapacitated Facility Location Problem with Concave Operating Cost (UFLPCOC). 
Specifically, we assume that service facilities are to be located and customers seek service from 
the closest open facility. As a consequence, an explicit constraint is needed in the model to impose 
closest assignment. An exact solution approach, which is called the Search and Cut algorithm, is 
presented. This approach is mainly based on sequentially improving the lower and upper bounds 
for UFLPCOC. Lower bounds are obtained by solving a UFLP model with extra linear constraints. 
To find an upper bound, we present a heuristic that is based on a neighborhood search procedure 
starting from the solution to a mixed integer programming model. An approximation solution 
approach is also suggested that explores linear approximation to transform the model into a mixed 
integer linear programming problem. Computational results are presented. It is found that the cost 
structure has a significant effect on intractability of the problem and that the Search and Cut 
algorithm dominates the approximation solution approach in general. 
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I. INTRODUCTION  

 
The uncapacitated facility location 

problem (UFLP) on a network is a classical 

model in the field of Discrete Location 
Theory (Brandeau and Chiu, 1989). It is also 
called the simple plant location problem in 
the literature, though plant location does not 
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exclude applications of the model in the 
service industry. In its basic formulation, 
facilities are located and demand regions are 
allocated to these facilities with an objective 
to minimize the total cost, including the setup 
cost to open facilities and the transportation 
cost from each demand region to its assigned 
facility. Krarup and Pruzan (1983) proved 
that the UFLP problem is NP-hard. Different 
from the median, center and maximal 
covering models, the number of facilities to 
set up is not necessary to specify in advance 
for UFLP. Instead, it is a by-product of 
optimization through balancing the fixed cost 
and the transportation cost. The problem is 
uncapacitated as there is no limit on demand 
allocated to each open facility. Efroymson 
and Ray (1966) noted that the basic 
formulation of UFLP exhibits both the 
closest assignment and single assignment 
properties, i.e., at the optimal solution, each 
demand node is fully served by the closest 
open facility. 

A branch and bound algorithm was 
developed in Efroymson and Ray (1966) for 
the UFLP problem. In the procedure, the 
linear relaxation problem is solved to yield an 
initial lower bound. A branch-and-bound tree 
is built by continuously branching from a 
non-integer location decision variable in the 
current solution and a series of linear 
relaxation problems are then generated and 
solved to improve the lower bound 
progressively until all location decision 
variables in the current solution become all 
integers.  Cornuejols, Fisher and Nemhauser 
(1977) presented a Lagrangian relaxation 
algorithm for the UFLP problem and derived 
the worst-case bound of a greedy heuristic. 
Morris (1978) reported that solving the linear 
relaxation problem of a tighter basic UFLP 
formulation (William, 1974) returned the 
exact optimal solution to the original model 
in 96% of the computational instances. 

The reader is referred to Krarup and 
Pruzan (1983) and Verter (2011) for 

literature reviews on the UFLP problem and 
its capacitated counterpart. A major 
extension of UFLP is to include the variable 
or operational costs in the objective function. 
A facility’s variable cost is a function of the 
overall demand it serves. The presence of 
economies of scale apparently justifies a 
concave variable cost as the unit operational 
cost normally decreases in the number of 
units processed.  Verter and Dincer (1995) 
noted that the closest assignment property no 
longer holds for the UFLP problem with 
concave variable costs. Piecewise concave 
variable costs were considered in Efroymson 
and Ray (1966), while variables costs were 
modeled by power functions in Khumawala 
and Kelly (1974). Efroymson and Ray (1966) 
suggested an approach to transform UFLP 
with piecewise linear variable costs into an 
expanded UFLP formulation that associates a 
potential facility with each line segment.  
Soland (1974) developed a branch and bound 
algorithm for general concave variable costs. 
The procedure treats UFLP as a fixed-charge 
transportation problem and obtains the 
optimal solution to each sub-problem in a 
linear programming form via simple 
inspection. Each sub-problem is generated by 
branching on a selected demand node to add 
an additional line segment to approximate the 
associated variable cost function. The 
location and capacity acquisition model 
Verter and Dincer (1995) formulated is very 
close to the model studied in the current 
study. However, in their formulation, the 
closest assignment property is not enforced. 
The authors devised a branch and bound 
algorithm, in which the branching step is 
similar to the one Soland (1974) proposed, 
but the resulting sub-problems are still UFLP 
models. 

In this study, we consider locating 
service facilities to satisfy customer demand. 
In particular, customers travel to the 
immobile facilities to seek service. There is a 
rich literature in location theory on coverage-
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type problems where capacity and congestion 
at each service facility are modelled through 
a queuing system. We refer the reader to 
Berman and Krass (2015) for a recent 
literature review. But in the current study, we 
are mainly concerned with minimizing the 
overall cost for locating and operating such 
service facilities in addition to customers’ 
travel expenses and disregard any uncertainty 
in demand or supply. Although the service 
provider incurs the fixed and variable cost of 
the facilities while the customers incur the 
traveling cost, our objective is to find a 
socially optimal solution that minimizes the 
overall cost. Consequently, we study a UFLP 
problem in nature.  

We note such a problem is suitable for 
facilities such as supermarkets and postal 
offices with relatively stable and 
homogenous demand where the capacity can 
be determined easily so as to keep the 
respective service time and waiting time 
constant or negligible relative to the amount 
of time customers spend traveling to 
facilities. Although a service facility location 
problem is considered in this study, we note 
that the model and solution methods 
developed in this paper can be easily 
extended to many more applications 
including the location of manufacturing 
facilities, distribution centers, or online retail 
warehouses where the shipping cost is paid 
by the facilities.  

We assume that the variable cost at 
each facility is a concave function of the 
number of customers served. Though the 
closest assignment property would not carry 
over to the UFLP model with variable costs, 
it was not enforced in any of the existing 
formulations. That is, customers may be 
assigned to a distant facility even though an 
open facility is nearby. Such a feature might 
be feasible in a centralized decision-making 
environment, but it would not work in a 
customer-choice situation unless some 
mechanism could force customers to follow 

the assignments. As noted in Berman, Krass 
and Wang (2016), models that ignore 
customer choices may significantly 
underestimate the demand at some facilities. 
In our study, a constraint is applied to ensure 
that customers be assigned to the closest 
facility that is open. 

The model presented in the current 
study works in a distributed decision-making 
environment where customers seek for 
service at a facility at their own choice. As 
such a decision-making environment reflects 
the reality of a majority of the service 
providers, the model will enable the 
management to predict the relevant costs 
more accurately and make a robust facility 
location decision. The model will also enable 
the management to make trade-offs among 
different cost components, including the 
facilities’ fixed cost and variable cost as well 
as customers’ transportation cost.  

The problem of interest, which we 
call the uncapacitated facility location 
problem with concave operational costs 
(UFLPCOC) is modeled in Section 2. A 
motivating example is analyzed to show that 
closest assignment property does not hold 
automatically. An approximation solution 
approach and an exact solution approach are 
presented in Section 3. The approximation 
approach first approximates each variable 
cost function as a concave piecewise linear 
function and then solves the resulting MIP 
model. The exact solution approach is mainly 
based on obtaining efficient lower and upper 
bounds for the problem. Lower bounds are 
obtained by solving the MIP model with 
additional linear constraints. To find an upper 
bound, we present a heuristic that is based on 
a neighborhood search heuristic over the 
location sets optimal to the MIP model. This 
exact solution approach adopts the search-
and-cut methodology proposed by Aboolian, 
Cui and Shen (2012). Computational results 
are presented in Section 4. Finally, some 
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conclusions and a suggestion on future 
research topics are provided in Section 5. 

 
II.  PROBLEM STATEMENT 

 
Let | |  be the set of 

customer demand regions and | |  
be the set of candidate locations for the 
facilities. We denote the demand rate at node 
∈  by . If a facility is located at site , 

we call it facility . For facility ∈ , denote 
by 0 the fixed cost to open the facility 
and by  the variable cost to operate 
with demand . Owing to economies of 
scale, we assume that  is a concave 
function in . Let  be the access cost of a 
customer from node  to facility . It is 
assumed that  is proportional to the 
distance between node  and facility . It 
follows that 0  and  hold for 
any  and . 

We use ⊆  to denote the set of 
open facilities. Define  ∈  to be the 
facility in  that serves customers residing at 
node ∈ . As explained in the previous 
section, customers travel to the closest open 
facility for service. It follows 
argmin

∈
 holds for node ∈ . Define 

 to be the set of demand nodes served 
by facility ∈ . Note ∈ : 

. Given the definitions, it is easy to 
derive ∑ ∈ . 

Define  to be the total cost under 
a given location set , i.e., 

∈ ∈

∈∈

. 

The Uncapacitated Facility Location 
Problem with Concave Operating Cost 
( ) is formulated as: 

min
⊆

. 

We now write the problem as a 
nonlinear integer program. Let  be a binary 
variable, which is one if a facility opens at 
site  and zero otherwise. Let  be a binary 
variable, which is one if customers at node  
travel to facility  for service and zero 
otherwise. Given the above definitions, 

 is formulated as: 

min
∈∈

∈∈

 

s.t. 
∑ 1, ∀ ∈ ,∈       (1) 

, ∀ ∈ , ∈ ,    (2) 
∑ ,∈

		 		 ∀ ∈ , 	 ∈ ,     (3) 
, ∈ 0, 1 , ∀ ∈ , ∈ .      (4) 

 
In the model, constraints (1) ensure 

that every demand node is served, while 
constraints (2) enforce customers travel to 
open facilities only. Constraints (3) require 
that each demand node is assigned to the open 
facility with the least access cost. In 
constraints (3),  is a positive number 
sufficiently large (e.g. max ∈ , ∈ ). 

If function 0 at any site , then 
constraints (3) become redundant as 
minimizing the access cost implies the 
closest assignment property. In addition, the 
binary constraint on  can be replaced by 
constraint 0 1  because the single 
assignment property also holds. However, if 
function  is not all zero, constraints are 
needed to impose closest assignment and the 
binary constraint on  cannot be relaxed.
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FIGURE 1. A NETWORK OF THREE NODES 
 
To motivate the study, consider the 

network presented in Fig. 1. The demand 
weights originated from nodes ,  and  
are  3 and 4. The fixed cost 
to locate a facility at each of the three nodes 
is 5, 12 and  6. The variable 
cost to operate an open facility at each node 
is in the form of a power function 

, with 3, 4 0.5, 

and 1 . In addition, we assume 
5, 4 and 6. All possible 

solutions are presented in Table 1.  

We note that the optimal solution to 
the above model is to locate a facility at node 
A (solution 1 in Table 1). The total cost under 
this solution is 52.5. However, solution 6, 
i.e., locating facilities at node  and  while 
assigning node  to the facility at node  
(instead of node  that is closer) would be 
more economical with a total cost of 47.9 if 
the closest assignment requirement were not 
imposed. 

 

 
TABLE 1. SOLUTIONS TO THE MOTIVATING EXAMPLE 

Solution 
Location Allocation Fixed cost Variable cost Access cost Total cost 

index 
1 1 1 5 9.5 38 52.5 
2 1 1 12 40 27 79 
3 1 1 6 30 34 70 
4 1	 1 17 23.3 18 58.3 
5 1	 1 17 33.2 12 62.2 
6 1 1 11 16.9 20 47.9 
7 1 1 11 26.2 16 53.2 
8	 1 1 23 30.2 0 53.2 

 
The fixed cost and the variable cost 

are increasing while the access cost is 
decreasing in the number of open facilities. 
Examining the solutions in Table 1, we 
observe that it may be better off to open more 
facilities because the reduction in the access 
cost could offset the increment in the other 
two cost components. In particular, the rise in 

the variable cost could be controlled via a 
prudent allocation of customer demand to 
facilities. If, however, customers choose 
which facility to patron at will, a solution 
may turn out to be costly because the actual 
variable cost was underestimated. For 
instance, solution 6 in Table 1 results in a 
variable cost of 16.9 when customers from 

A

B 
C 
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node  are assigned to the facility at node . 
If all customers patron the closest facilities, 
i.e., customers from node  seek service at 
the facility at node , the solution’s variable 
cost will jump to 26.2, which will make this 
solution sub-optimal.    

A variant of the  model is 
to remove the access cost ∑ ∑ ∈∈  
from the objective function and impose 
∑ ∑ ∈∈ 	 as a constraint, 
where D is a constant.  This is equivalent to 
minimizing the sum of the fixed cost to open 
the facilities and the variable cost to operate 
the facilities subject to an additional 
constraint that bounds the total access cost 
from above. It is evident that this new model 
optimizes the location decision from the 
perspective of the service provider, instead of 
the system that includes the service facilities 
and the customers. 

Let’s re-examine Table 1. Note that 
solution 4 and solution 6 are not feasible 
under the closest-assignment constraint 
anyway. It is easy to see for the new model, 
solution 8, solution 5, solution 7, solution 3 
or solution 1 will be optimal, respectively, if 

12 , 12 16 , 16 34 , 34
38 , or 38 . Coincidently, the 

original formulation and the new formulation 
with a sufficiently large   value have an 
identical optimal solution in this example.   

The new formulation is similar to the 
original one in the sense of making a trade-
off among the facilities’ fixed cost and the 
variable cost as well as the customers’ access 
cost. If  is small, solutions with high access 
costs tend to be infeasible, and therefore it is 
optimal to open more facilities. If  is large, 
there are more feasible solutions and 
therefore it is optimal to open fewer facilities.  

As will be shown later, the original 
model is computationally intractable due to 
the closest-assignment constraint and the 
non-linear variable cost functions, not the 
total access cost function, which is linear. As 

a result, the computational complexity of 
solving the two formulations should be about 
the same. We thus focus on the original 
model in this study.    

Note that , a nonlinear 
integer program, is intractable in nature. The 
closest assignment constraints make the 
branch and bound algorithms developed by 
Soland (1974) and Verter and Dincer (1995) 
not applicable any more. To efficiently solve 
this problem, we propose an exact solution 
approach in the next section. 

 
III.  ALGORITHMS FOR UFLPCOC 

 
Similar to Aboolian, Cui and Shen 

(2012), our exact solution approach is mainly 
based on obtaining efficient lower and upper 
bounds for . In Section 3.1, we 
develop an MIP, for which the optimal 
objective function value is a lower bound to 

. In Section 3.2, we present a 
heuristic, which is based on neighborhood 
search over the location set optimal to the 
MIP. The heuristic is used to find an upper 
bound to . The exact approach 
presented in Section 3.3 is based on 
successive lower and upper bound 
improvements for . 

 
3.1 A Lower Bound for  

 
In order to determine a lower bound 

for , concave function  is 
replaced with a piecewise linear function 

 for any ∈  with break points 

⋅⋅⋅ ,  

,  , where  is the number of line 

segments, and  is ensured for 
 with the equality reached 

at the break points only. Let  and  be, 
respectively, the slope and -intercept of line 
segment 1, 2, ⋅⋅⋅, . As depicted in Fig. 
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2, segment  is bounded by ,  and . 
Because  is concave and increasing, 

⋅⋅⋅  and ⋅⋅⋅

 follow. The lemma below can be proven 
easily. 

Lemma 1.  

min  holds for ,

. 

 
 

 
FIGURE 2. PIECEWISE LINEAR APPROXIMATION 

 
If facility  is open, then it can absorb 

all demand. We hence define 
∑ ∈ . On the other hand, the minimum 
demand that an open facility  can fulfill is 

∑ ∈ : , ∀ ∈ , namely the 

total demand weights from the nodes closer 
to site  than to any other. Note  if 

 and  are identical. It is evident that the 
following formulas return the slope and -
intercept of line segment  once the break 
points are determined, 

,

,
 

and 
. 

Given the number of line segments 
, we examine two approaches to select 

break points. In the first approach, the break 

points are evenly spaced between  and 

. That is,  for 

0, 1, ⋅⋅⋅, . In the second approach, an 
iterative procedure is adopted to continuously 
reduce the maximum relative error between 
the original function  and its 
approximate   until the gap is small 
enough or after a pre-chosen number of 
iterations. 

The relative error function over each 
line segment  can be re-written as 

 for , . If 

 is derivable, its first-order derivative 
can be formulated as 

. The next lemma 

Λ  Λ  Λ ⋅⋅⋅ ⋅⋅⋅ Λ ,  Λ  

Λ
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suggests an important property of function 
. 
Lemma 2. Function  is 

unimodal in ∈ , . 
Proof. Let 

. Its first-order 
derivative is  

. Recall that  is concave 
and hence 0  . Consequently, 

0  follows and  is monotone 
decreasing. Note that  is increasing, 
we thus know that  is monotone 
decreasing. It is easy to verify that 

, 0 and 0. It follows 

that there exists ∈ , ,  such that 

0. 
In light of the lemma above, we can 

apply the bisection method to find the unique 
point  on line segment , which 
maximizes the relative error. We next present 
a procedure to implement the second 
approach. 

 Step-1. Let  for 

, , ⋅⋅⋅, . Let . 
 Step-2. For each line segment , compute 

the slope  and the -intercept , then 

apply the bisection method to find  that 
solves equation 

. 

 Step-3. Let 
, ,⋅⋅⋅,

, 

, ,⋅⋅⋅,
 and 

. If 
, ,⋅⋅⋅,

, ,⋅⋅⋅,
 or  exceeds a pre-

selected level, stop. 
 Step-4. If , then go to Step 5. 

Otherwise, let , , , and go 

to Step 2. 
 Step-5. Let , , . Go to 

Step 2. 

In the above procedure,  is the 
expected bound of the gap and  is step size. 
At each iteration, either break point of the 
line segment with the highest relative error is 
adjusted to reduce the gap. 

By replacing  with  in 
, we establish the following 

mixed-integer linear program, which we call 
: 

min
∈ ∈∈∈

 

                                    s.t. 
                                   (1), (2), (3), (4) 
1 ∑ ∈

, ∀ ∈ , 1 ,                (5) 
∑ , ∀ ∈ ,             (6) 
0 1, ∀	 ∈ , 1 	. 
                    (7) 

where  is a number sufficiently 
large. In the above model, constraints (5) and 
(6) ensure that the operational cost  is zero 
if no facility is open at site , while  equals 

 when otherwise. Applying Lemma 1, 
we note that a decision variable  1  if 
and only if 1 and  ∑ ∈  lies 
on segment , while  0 otherwise. 

Alternatively, we can associate a 
pseudo-facility with each line segment of 
function  and develop a formulation 
equivalent to model  as follows. 

min
∈

∈∈

 
s.t. 
∑ ∑ 1,∈ ∀ ∈ ,                                    

, ∀ ∈ , ∈ , 1
,                        ∑ ∑∈

∑ ,
∀ ∈ , ∈ ,                                                 
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, ∈ 0, 1 , ∀ ∈ , ∈ ,
1 .                     

where decision variable 1  if 
facility  is open and  lies on segment  of 
function , while decision variable 

1  if customers from node  seek 
service from facility  and  lies on segment 

 of function  . The model above has a 
linear objective function as in the original 
UFLP problem. However, because the 
objective coefficients include  and , 
the closest assignment constraint is 
necessary. Note that this model requires more 
decision variables and constraints, we 
therefore use model  in our 
computational experiment described in the 
next section. The theorem below shows that 
model  returns a lower bound to the 

 model. 
Theorem 1. Denote by 	∗  and 

∗ , respectively, the optimal objective 
value of model  and model 

. 	∗  is a lower bound of 
∗ , i.e. 

	∗ ∗ . 
Proof. Let ∗  be the optimal 

location set to model . We note 
that by construction, solution ∗  can 
be converted into a feasible solution to model 

. Let 	be the  objective value 
of this feasible solution. Since 	

, it is easy to derive ∗

	∗ . 
 

3.2 An Upper Bound for  
 
We note that when function  is 

linear for any ∈ ,  reduces to 
the classical  model with a closest 
assignment constraint. Since  is NP-
hard,  is NP-hard as well. Thus, it 
is difficult to obtain good solutions for large 
size instances of  within a limited 

time frame. This fact motivates research on 
approximate approaches. 

The heuristic presented below is 
based on solutions to  and its variant. 
Given Theorem 1, a solution of  
provides a lower bound for . Note 
that the location and allocation decisions of 
this solution constitute a solution feasible to 

, the objective value of which 
bounds the true optimal objective value of 

 from above. 
Denote by  the set of open facility 

locations under a location decision vector 
, , ⋅⋅⋅ . To find an improved upper 

bound, the heuristic proposed uses a descent 
search approach in the neighborhood of . 
For each location set in the neighborhood we 
find its  objective value. The 
neighborhood of a location set  and the 
descent approach are described as follows. 

Define , the distance-  
neighborhood of ⊆  as 

⊆ : | | | | , 
i.e.  is in the distance-  

neighborhood of  if the number of non-
overlapping elements in the two sets does not 
exceed . 

Once the neighborhood is well 
defined, the descent search algorithm is 
straightforward: construct the neighborhood 
of set ; evaluate the objective value for 
every set in the neighborhood; move to the 
best set if the objective value improves. 
Repeat the process with the new set as the 
starting point until no improvement can be 
made. The best set obtained is the solution. 
We can then update the upper bound. 

 
3.3 An Exact Solution Approach for 

 
 
The exact solution approach 

presented here is an iterative procedure that 
attempts to successively improve the lower 
and upper bounds for  by applying 
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the heuristic proposed in Section 3.2. In each 
step, we try to increase the lower bound by 
solving a revised  model, which is a 

 formulation with additional cuts to 
exclude pre-examined location vectors (at the 
first step the  model does not include 
any cuts). The location set optimal to the 
revised  model in a step that increases 
the lower bound then serves as the starting 
point to initialize the descent search process 
with an attempt to decrease the upper bound. 
The procedure continues until the lower 
bound is greater than the upper bound, so that 
it is evident that the unexamined location sets 
are unable to improve the current upper 
bound. 

Next, we formulate the revised 
 model in the -th step of the 

algorithm, denoted by : 

min
∈ ∈∈∈

 

s.t. 
                                   (1), (2), (3), (4) 

1 ∑ ∈

, ∀ ∈ , 1 ,     
∑ , ∀ ∈ ,                                                             
0 1, ∀	 ∈ ,

1 	. 
In the -th step of the algorithm, an 

additional constraint set on the location 
decision variables, , is added to the 
revised  model, denoted by 

.  contains a cut for each 
starting location set used in the descent 
search approach applied in steps 1 to 1. 
Let  denote all these locations sets. 
Recall the definition of the distance-  
neighborhood. For any location set ˆ ∈

, the following constraint will 
ensure that any location decision vector  in 
the neighborhood of ˆ  (and has already been 
examined) is infeasible: 
∑ ∈ ˆ

∑ ∈ ˆ
	 | ˆ | 1.     (8) 

It follows that  includes 
constraint (8) to exclude any location set ˆ ∈

. The addition of these cuts to the 
 model will help to improve the lower 

bound. 
Assuming a relative precision level , 

we describe the exact solution approach 
below. 
The Search and Cut Algorithm 
 Step-0. Let , ∗ ,  

 and  ∞. 
 Step-1. Solve . If the problem is 

feasible, denote the optimal objective value 
by ∗  and optimal set of facility 
locations by ∗ . Otherwise, go to 

Step 5. 
 Step-2. If  ∗ , then 

let  ∗ . If 
	 	

, then go to Step 5. Otherwise, go to step 
3. 

 Step-3. Apply the descent search approach 
on the neighborhood  starting from 

∗ . For every solution in , 

compute the objective value of . 
Denote by ∗  the best objective 
value obtained. Construct set . 

 Step-4. If ∗  , 
then let  ∗  
and update the incumbent solution 
accordingly. Let  and go to Step 
1. 

 Step-5. Stop. Return the incumbent 
solution and the upper bound as the 
optimal solution and the optimal objective 
value, respectively. 

The algorithm terminates when all 
potential location vectors have been 
examined or when the gap between the 
bounds is close enough. It is obvious that the 
algorithm terminates in a finite number of 
steps. Note that   represents 
the true objective value of the best-found 
feasible solution, while   is a 
valid lower bound on all unexamined 
location vectors. 
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IV.  COMPUTATIONAL RESULTS 

 
The Search and Cut algorithm has 

been coded in C++ and experiments have 
been conducted on a PC ® CoreTM i7-
2600K, 16GB of RAM. We use the 
optimization engine CPLEX v12.7 for 
solving all optimization problems. 

The Search and Cut algorithm has 
been tested on four data sets that are based on 
1990 census data, with each node 
representing one of the  largest cities in the 
United States. Demands  are set to the city 
population divided by 10 , and the fixed cost 

 is set to the median home value in the city. 
The transportation cost  is calculated using 
the great circle distance between node  and 
. In all four data sets, the set of facilities  

is equal to the set of customers . 
We assume that the variable cost to 

operate facility  is given by the power 
function 

, 	∀ ∈  
with 0.5 and 2400. 
Three cost structures have been 

considered in the experiments for each data 
set with structure 1 being the baseline. In the 
other two structures, the fixed cost  and the 
variable cost  are amplified by ten times, 
respectively. So there are 12 problems in 
total. For reach problem, both approaches 
introduced in Section 3.2 have been 
employed to approximate variable cost  
with the number of line segments ∈
1,3,5 . In the procedure to optimize the 

break points, we set 0.01, 2 and the 
maximum number of iterations equal to 
2000. For the Search and Cut algorithm with 
the neighborhood size ∈ 1,2,3 , the 
relative precision level  has been chosen to 
be 1%. 

In total, 180 instances were solved in 
the computational study. A clock time limit 

of 1800  seconds has been set for solving 
each MIP model as long as a feasible solution 
is returned. A clock time limit of 3600 
seconds has been set for applying the Search 
and Cut algorithm. Note that the Search and 
Cut algorithm may not return a true optimal 
solution due to the time limit unless the gap 
between the upper bound and the lower 
bound is less than  or the upper bound is 
lower than the lower bound obtained. If the 
time limit was reached, we then searched for 
the best solution among the solutions 
returned by the Search and Cut algorithm and 
the approximation approaches (i.e., to solve 
the  model with a clock time limit of 
1800  seconds). Tables 2 to 5 present the 
clock time in seconds, the hit rate (hr, the 
percentage of instances where the best-
known solution was returned) and the 
solution quality (err, the average relative 
error of the solution returned with respect to 
the best-known solution). The results yielded 
by the approximation solution approaches are 
also included. In the tables, the letter “n” or 
“y” following the number of line segments 
indicates, respectively, that the break points 
used in linear approximation are evenly 
spaced or optimized. The observations below 
can be made. 

• Under cost structure 2, the 
fixed cost dominates the variable cost. 
As it would be suboptimal to open too 
many facilities, the problem might 
become easy to solve for a smaller 
solution space. As a result, all 60 
instances were solved quickly to 
optimality by both solution approaches. 

• The problem with a higher 
variable cost appears to be harder to 
solve than the baseline. In general, both 
solution approaches took longer clock 
time to solve the problem under cost 
structure 3 and the solution quality also 
deteriorated. 
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TABLE 2. SUMMARY OF COMPUTATIONAL RESULTS ( ) 
 Cost Structure 

 
Search and Cut LBMIP 

 time (s) hr (%) err (%) time (s) hr (%) err (%) 
  1 3600 100 0 1 100 0 
 1 3 n 3600 100 0 6 100 0 
  3 y 51 100 0 43 100 0 
  5 n 3600 100 0 74 100 0 
  5 y 1906 100 0 1867 100 0 
  1 1 100 0 1 100 0 
  3 n 1 100 0 1 100 0 
 2 3 y 1 100 0 1 100 0 
  5 n 2 100 0 1 100 0 
  5 y 4 100 0 2 100 0 
  1 3600 0 0.2 1 0 0.7 
  3 n 3600 0 0.4 1800 0 0.5 
 3 3 y 3600 0 0.2 1800 0 0.2 
  5 n 3600 0 0.1 1800 0 0.1 
  5 y 2452 100 0 1800 100 0 

 
TABLE 3.  SUMMARY OF COMPUTATIONAL RESULTS ( ) 

 Cost Structure 
 

Search and Cut LBMIP 
 time (s) hr (%) err (%) time (s) hr (%) err (%) 
  1 3600 0 0.0 1 0 0.8 
  3 n 3600 0 0.0 49 0 0.3 
 1 3 y 3051 100 0 1503 100 0 
  5 n 3600 0 0.0 1800 0 0.3 
  5 y 1918 100 0 1800 0 0.0 
  1 3 100 0 1 100 0 
  3 n 3 100 0 1 100 0 
 2 3 y 3 100 0 3 100 0 
  5 n 5 100 0 5 100 0 
  5 y 5 100 0 4 100 0 
  1 3600 67 0.0 1 0 8.9 
  3 n 3600 33 0.2 1800 0 4.0 
 3 3 y 3600 33 0.0 1800 0 0.0 
  5 n 3600 33 0.0 1800 0 0.0 
  5 y 1869 100 0 1800 0 0.0 

 
TABLE 4.  SUMMARY OF COMPUTATIONAL RESULTS ( ) 

 Cost Structure 
 

Search and Cut LBMIP 
 time (s) hr (%) err (%) time (s) hr (%) err (%) 
  1 3600 0 0.0 1 0 0.5 
  3 n 3600 0 0.0 153 0 0.2 
 1 3 y 3600 0 0.0 1800 0 0.2 
  5 n 3600 0 0.0 1800 0 0.2 
  5 y 1925 100 0 1800 100 0 
  1 15 100 0 1 100 0 
  3 n 6 100 0 2 100 0 
 2 3 y 8 100 0 4 100 0 
  5 n 14 100 0 11 100 0 
  5 y 15 100 0 11 100 0 
  1 3600 0 0.5 1 0 7.7 
  3 n 3600 0 2.5 1800 0 7.5 
 3 3 y 3600 33 0.0 1800 0 0.0 
  5 n 3600 0 0.1 1800 0 0.2 
  5 y 3600 100 0 1800 0 0.7 
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TABLE 5.  SUMMARY OF COMPUTATIONAL RESULTS ( ) 
 Cost Structure 

 
Search and Cut LBMIP 

 time (s) hr (%) err (%) time (s) hr (%) err (%) 
  1 3600 0 0.0 1 0 0.7 
  3 n 3600 0 0.0 461 0 0.1 
 1 3 y 3600 0 0.0 1800 0 0.0 
  5 n 3600 100 0 1800 100 0 
  5 y 3600 100 0 1800 100 0 
  1 56 100 0 1 0 0.0 
  3 n 31 100 0 8 0 0.0 
 2 3 y 49 100 0 9 100 0 
  5 n 76 100 0 55 100 0 
  5 y 88 100 0 29 100 0 
  1 3600 0 1.5 1 0 14.4 
  3 n 3600 33 0.8 1800 0 1.3 
 3 3 y 3600 66 0.4 1800 0 1.3 
  5 n 3600 33 0.2 1800 0 3.0 
  5 y 3600 100 0 1800 0 0.5 

 
• The computational results not 

reported here showed that the number of 
facilities to open in the optimal solution 
or the best-known solution under cost 
structure 2 and structure 3 was usually 
40  to 50  percent of that under the 
baseline. We could infer that fewer 
facilities were open so as to avoid high 
fixed costs or to take advantage of 
economies of scale with respect to 
variable costs. 

• In general, the solution gap 
between the upper bound and the lower 
bound of the Search and Cut algorithm 
decreased with the neighborhood radius 
. This seemed to suggest that descent 

search was effective to improve the 
upper bound. 

• In general, the solution gap of 
the Search and Cut algorithm between 
the upper bound and lower bound 
decreased with the number of line 
segments . Optimizing the break 
points also had the potential to reduce 
the gap. 

• The best objective value of the 
 model returned in general 

improved (i.e., getting smaller) as the 
number of line segments  increased 
and after the break points were 

optimized. However, this trend 
discontinued at 150  possibly due 
to the time limit set on the Branch and 
Bound algorithm. 

• For both two solution 
approaches, optimizing the break points 
in linear approximation helped improve 
the solution quality. 

• Compared to the 
approximation solution approach, the 
Search and Cut algorithm returned 
either the same solution or a better 
solution for all instances. 

• For all 12 problems, the 
Search and Cut algorithm with 5 
line segments and optimal break points 
returned the optimal solution or the best-
known solution under all three 
neighborhood size levels. 

Based on the above observations, we 
would like to recommend the Search and Cut 
algorithm for solving the  model 
after approximating each variable cost 
function with 5  line segments and 
optimizing the break points. 

 
V. CONCLUSIONS 

 
An uncapacitated facility location 

model with concave operating costs is 
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presented. We require that customers travel 
to the closest open facility for service. 
Therefore, a constraint is incorporated into 
the optimization model to impose the closest 
assignment property. An exact approach for 
solving the  model is developed. 
The approach is based on obtaining efficient 
lower and upper bounds. Lower bounds are 
found by solving an MIP model with a tighten 
feasible region in each step of the algorithm. 
This is achieved by introducing cutting 
planes in the MIP model. On the other hand, 
a heuristic based on neighborhood search is 
proposed to find an upper bound. 

Computational experiments suggest 
that the cost structure of the problem strongly 
influences the difficulty in solving 

 exactly. We observe that solving 
the problem to optimality is harder when 
variable costs dominate fix costs. It is evident 
that when approximating each variable cost 
function using five line segments and 
optimizing the break points, the Search and 
Cut algorithm is able to return a high quality 
solution. 

As an extension of this work, we plan 
to apply the methodology proposed to other 
types of functions, such as difference of 
convex (d.c.) functions (Blanquero and 
Carrizosa, 2009). This functions can be easily 
approximated by a linear function in the same 
way we have done with concave functions. 
As another possible extension, we would like 
to apply our solution method to other 
problems of the same nature, such as -
median type problems with nonlinear costs, 
as in Carrizosa, Ushakov and Vasilyey 
(2012), or a different nature. We can thus 
compare the performance of our approach 
and other available methods. 
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