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Many public universities require undergraduate students to take a substantial number of general 
education courses distributed among various areas of knowledge. This article describes a computer 
model that simulates the flow of undergraduates through the lower division portion of the general 
education curriculum at San Francisco State University, one of the 23 campuses of the California 
State University system. The model permits various changes in the general education curriculum, 
such as course sequencing, pass rates, retention rates, capacities, and enrollment, to be tested for 
their potential impact on students. Key outcome measures are the elapsed time taken to complete 
all requirements and the percentage of these requirements that students complete within three years 
of starting this curriculum. Experiments conducted show that time to complete requirements and 
percent complete behave as expected to changes in pass rates and capacities. Increased retention 
rates pose challenges unless they are met with increased capacities. 
 

* Corresponding Author. E-mail address: saltzman@sfsu.edu 
 
 
 
I. INTRODUCTION  
 

The California State University (CSU) 
system educates more than 480,000 students 
every year and, with 23 campuses and eight 
off-campus centers, is the largest four-year 
public university system in the United States 
(California State University, 2018). Like 
many other public university systems, the 
CSU requires undergraduate students to take 
a substantial number of general education 
(GE) courses. While a student’s major 
provides in-depth study in one subject area, 

GE imposes a breadth of study that aims to 
instill knowledge in students that will serve 
them for a range of future experiences and 
provide them with the intellectual agility to 
move from one career to another (San 
Francisco State University, 2018). The GE 
curriculum at all CSU campuses, including 
San Francisco State University (SFSU), 
requires students to complete 48 units in 16 
courses distributed across various areas of 
knowledge, such as English language 
communication, science and quantitative 
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reasoning, arts and humanities, and social 
sciences (White, 2017). 

In September 2016, CSU launched its 
Graduation Initiative 2025 in order to 
increase completion rates for all students 
while closing achievement gaps among low-
income and underserved students (California 
State University, 2018). The initiative’s 
ambitious goals challenge the system to more 
than double its current 4-year graduation rate 
for first-time freshmen in nine years, as well 
as graduate 500,000 additional students by 
2025 – meeting the CSU’s share of the state’s 
projected degree shortfall. For SFSU, in 
particular, the goal is to raise its 4-year 
graduation rate from 22% for the 2013 cohort 
to 33% for the 2021 cohort (San Francisco 
State University, 2017). Consequently, there 
is keen interest on campus to analyze our 
curriculum (and the student experience more 
broadly) and identify barriers to student 
success (Altura et al., 2018).  

However, before possibly altering 
policies and allocating resources to try and 
achieve the target 4-year graduation rate, it 
would be helpful to first understand more 
clearly how any actions taken might affect 
student flow through the curriculum. To do 
so, we developed a discrete-event computer 
simulation model that mimics how 
undergraduates move through the lower 
division portion of GE, which consists of 13 
requirements spread across 5 major areas (see 
Fig. 1). We chose to focus on the GE 
curriculum as it is the major, common focus 
of incoming freshmen and can have a 
significant effect on student success. Further, 

it is something that is more easily controlled 
at the university level than are curricula in the 
major. Our modeling effort was limited to the 
lower division portion of the GE curriculum 
because upper division requirements may be 
satisfied with a very large number of courses 
and do not seem to be constraining student 
progress toward graduation. 

By design, SFSU’s GE curriculum is 
broad, requiring students to take courses in a 
wide variety of subject areas, with few 
embedded prerequisites; e.g., while all Area 
E courses require students to have first 
completed a Written English course in 
subarea A2, only a small fraction of 
humanities courses in subarea C2 have a 
similar requirement. Meanwhile, Lab 
Science courses in subarea B3 may be taken 
concurrently with a Physical or Life Science 
class. A more thorough description of 
SFSU’s GE program can be found in the 
university’s on-line bulletin (San Francisco 
State University, 2018). The purpose of our 
modeling effort is to provide an objective 
framework for assessing the impact of 
various changes to the GE program. In 
particular, this paper describes using the 
model to investigate how performance 
measures, such as the elapsed time to 
complete GE requirements, might change if 
course pass rates and year-to-year retention 
rates were improved. It also reports on the 
potential impact of increasing the GE 
program’s capacity to seat more students and 
of changes in the number of newly enrolled 
students. 
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FIGURE 1. SNAPSHOT OF THE ANIMATED PORTION OF THE LODGE SIMULATION MODEL. 
 
II. LITERATURE REVIEW 
 

Although operations research 
techniques have been applied to educational 
issues for more than 50 years, this review will 
limit itself to approaches taken to address 
planning issues in higher education. These 
techniques generally fall into four major 
categories: statistical methods, mathematical 
programming, Markov chain models, and 
computer simulation models. Statistical 
methods, including machine learning 
algorithms, have been applied to student 
experiences in many settings, including 
student flow, retention rates, and graduation 
rates (Willett, 1982; Simpson, 1987; Knight, 
2002). Both descriptive and explanatory 
models have been created, and can be used to 
evaluate the impact of changes in the 
independent variables. For example, Knight 
(2004) developed a multiple regression 

model to gauge the impact of dozens of 
student-behavioral factors (e.g., academic 
preparation, college grade point average 
(GPA), financial need) on elapsed time to 
degree. One difficulty in doing so is the 
collinearity of these predictors. Because 
student behavior is complex, many factors 
(nonlinearly) interact and affect the outcomes 
being studied. Goenner and Snaith (2004) 
also developed a multiple regression model 
to predict graduation rates at R1 institutions, 
including institutional characteristics (e.g., 
student-faculty ratio, weighted tuition rates) 
in their model. They found that student and 
institutional factors both play a role in 
graduation rates, but, as in Knight (2004), 
that it is challenging to explicitly characterize 
the different aspects of these factors. In this 
sense, simulation modeling is better suited 
for prediction because it captures these 
behaviors more readily. 
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Arsad, Buniyamin, and Ab Manan 
(2014) compared the performance of neural 
network and linear regression models in 
predicting the final cumulative GPAs of 
electrical engineering students at a Malaysian 
university. They found that neural networks 
have higher correlations and lower MSE 
values than regression models, and that 
student grades in foundational engineering 
courses are strong predictors for final GPAs. 
Slim et al. (2014) used a Bayesian Belief 
Network to accurately predict student GPA 
starting early in a student’s academic career, 
given the student’s performance-to-date. The 
networks in this paper represent the 
curriculum map of required courses and their 
prerequisite structure. By contrast, Slim et al. 
(2016) used Sequential Pattern Mapping to 
identify the sequence of courses taken by 
“successful” (i.e., high-GPA) students to 
compare it to the order in which less 
successful students progress through the 
curriculum. Their analysis showed a dramatic 
difference between the sequences and even 
the courses taken by the two groups. Ojha 
(2017) and Ojha et al. (2017) used a variety 
of statistical learning models to predict delay 
in graduation based on an increasing number 
of input variables. Their initial models 
incorporated pre-university and demographic 
information on students, while subsequent 
models added data on student performance 
up to their second and third years. The 
accuracies of the models were in the 67-76% 
range.  

Mathematical programming models 
have also been widely applied to analyze 
enrollment, student success, and teacher-
student ratios. Correa (1967) surveyed 
numerous models that form the basis of these 
analyses. The number of enrolling students is 
typically calculated based on factors such as 
the number of new enrollments, repeats, 
dropouts, re-enrollments, graduates, and 
deaths. In particular, Gani (1963) showed 
that a strong correlation exists between 

student enrollment and student pass and 
repeat rates, emphasizing the importance of 
collecting student data. However, 
mathematical models are typically isolated 
from other social aspects that influence the 
overall supply of students. Stone (1965) used 
an economic input-output model to analyze 
demographic changes over time as an 
indicator for the supply of future students. 
The model used pre-determined parameters 
for population growth based on birth rates but 
omitted factors such as immigration. It also 
made other simplifying assumptions to 
ensure linearity, including a pre-defined 
constant student pass rate and limiting the 
educational curriculum to one sequence. 
Using another economic input-output model, 
Stone (1966) found that student pass rates are 
often not constant or monotonic over time. In 
addition, the level of educational penetration 
varies widely across different social classes. 

Non-linear programming models 
have also been applied to analyze the 
relationship between student enrollment, 
student success, and teaching staffs. Correa 
(1967) presented a model that assumes a 
positive correlation between successful 
students and the supply of good teachers. 
This model shows the positive evolutionary 
cycle of the educational system and 
demonstrates the importance of improving 
educational systems in general. Oliver and 
Hopkins (1972) presented a network flow 
model at equilibrium for estimating student 
enrollments of different groups. Their model 
assumed a linear relationship between 
student enrollment and the number of various 
types of teaching staff (tenure track faculty, 
part time faculty, and teaching assistants) but 
did not consider changes in the size of the 
teaching staff. It accurately predicted student 
enrollment at UC Berkeley.  
 Educational systems have been 
viewed by some as Markov processes in 
which students move through an ordered set 
of states based on a transition matrix holding 
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the probabilities of moving from state to state 
(Johnes 2015). Markov models can be 
straightforward to set up and solve, allowing 
the steady-state probability of being in any 
state after many transitions to be found. One 
such study by Bessent and Bessent (1980) 
analyzed the progression of doctoral students 
through their degree program. Another by 
Kwak et al. (1986) extended this approach to 
a trimester-based institution and was able to 
fairly accurately forecast departmental 
enrollments and graduation rates. Shah and 
Burke (1999) used a Markov model to 
estimate the average time needed by 
undergraduates to complete their degrees 
while accounting for each student’s course of 
study, gender, and age when starting the 
degree program. Nicholls (2009) built a small, 
10-state Markov model of students moving 
through a part-time doctoral program in order 
to forecast the number of students in each 
year of the program; these forecasts, in turn, 
were used to estimate the program’s expected 
revenue and supervisor workload. 

It should be noted that Markov chain 
models require the system under study to 
possess both the Markovian property and 
stationary transition probabilities (Hillier and 
Lieberman 1990). Many systems, 
unfortunately, lack one or both of these 
conditions. At universities, transition 
probabilities are not stationary because both 
the number of seats made available and the 
number of students competing for these seats 
vary from term to term. Simulation models, 
by contrast, require neither of these 
conditions and can handle subtle aspects of a 
process, such as the prioritization of various 
groups of students when they register for 
courses. Because of its flexibility, 
simulation’s advantage over other analytical 
methods tends to increase as system 
complexity increases. 

One effort applying simulation to an 
educational planning setting was reported by 
Plotnicki and Garfinkel (1986) who used 

simulation to create course schedules that 
might allow the largest number of students to 
flow smoothly through their university’s 
MBA curriculum while maintaining 
feasibility for the departments who offer the 
courses. Although our goal is also to 
understand and facilitate student flow, we 
take the university’s extensive GE class 
schedule (built from myriad departments’ 
independently developed schedules) as a 
fixed input to the model. Webster (1997) 
describes a spreadsheet simulation model 
used to analyze costs in Papua New Guinea’s 
educational system, and make funding 
decisions for the whole country. 

Mansmann and Scholl (2007) built a 
decision support system for a flexible 
curriculum in Germany that allows users to 
input modifications to the curriculum and 
then simulate the impact on resource 
requirements. Simulation experiments 
undertaken by Schellekens et al. (2010) 
tested the effectiveness of a redesigned 
program at a Dutch university that allows 
students to take any course at virtually any 
time. Saltzman and Roeder (2012) 
constructed a discrete event simulation model 
of undergraduate student flow that was used 
to evaluate potential changes in curriculum 
policy, prerequisite structure, and staffing 
capacity decisions at a large public business 
college facing budget cuts. In a similar vein, 
Weber (2013) simulated students moving 
through an undergraduate engineering 
program in order to test the impact of possible 
enrollment increases, capacity reductions, 
and grading option changes. Hickman (2017) 
developed an open-source software library 
flexible enough to input any curriculum, 
compute metrics of its structural complexity, 
and simulate its impact on students’ ability to 
successfully move through it. Experiments 
with the library indicated that more complex 
curricula are negatively correlated with 
student success. 



Robert Saltzman, Stewart Liu, Theresa Roeder 
Simulating Student Flow Through a University’s General Education Curriculum 

 
Journal of Supply Chain and Operations Management, Volume 17, Number 1, February 2019 

 
19 

As described in the next section, the 
present article adapts the focused business 
core curriculum framework found in 
Saltzman and Roeder (2012) to the broader 
GE curriculum at SFSU. We hope that the 
results from this effort can be used to inform 
decision making and resource allocation at 
the university level regarding GE courses 
required of all incoming students. To the best 
of our knowledge, this is the first effort to 
simulate the flow of thousands of students 
through a university’s GE program. 
 
III. THE LODGE SIMULATION 
MODEL 

 
SFSU’s GE curriculum is comprised 

of courses in eight areas spanning lower and 
upper division classes (see Fig. 1). Because 
there are so many course choices for students 
to fulfill their upper division requirements in 
areas UD-B, UD-C, and UD-D, these areas 
do not create bottlenecks. To focus on what 
matters most, our model tracks student 
progress only in (lower-division) areas A–E; 
consequently, it is called the Lower Division 
General Education (LODGE) model. The 
LODGE model was built with Arena 15, a 
process-oriented simulation package (Kelton, 
Sadowski and Zupick, 2015). Students are 
the model’s main entities moving through the 
process. GE (sub)areas are modeled as 
resources with large but finite capacities, so 
students may be blocked from taking courses 
in a particular subarea in a given term. When 
the model runs, students can be seen moving 
through the various subareas, as in Fig. 1. 
However, since thousands of students move 
through the system, only a small fraction of 
them are shown on screen. Meanwhile, 
counters dynamically update the number of 
students enrolled in each subarea, as well as 
the cumulative number who have passed, 
failed, and been blocked in each subarea. The 
lower right part of Fig. 1 also displays the 
current number of students who have 

completed all lower division GE courses and 
the average elapsed time needed to do so. 

The model’s structure is essentially 
the same as that of the business 
undergraduate flow (BUF) model of 
Saltzman and Roeder (2012); a detailed 
description of the BUF model can be found 
in that article, but its modified operation to fit 
the LODGE model can be summarized as 
follows. At the start of each term, new First-
Time Freshman (FTF) students are created 
and subarea capacities are reset. New and 
continuing students are assigned updated 
priority numbers for the upcoming course 
registration based on how long they have 
been at SFSU. In the registration process, the 
model first determines how many GE courses 
the student wishes to register for by sampling 
from the appropriate GE course load 
distribution (Table 2); it then tries to enroll 
students in those GE courses. During 
registration, students may be blocked from 
enrolling in a subarea that is already filled, in 
which case the student attempts to enroll in a 
course in the next available subarea. Students 
then take all the courses in which they are 
enrolled. At the end of the term, students 
either pass or fail each course taken (based on 
input subarea pass rates). A large array is 
employed to track every student’s success or 
failure in each subarea. 

At the end of each term, the model 
records information such as the time to 
complete GE requirements for students who 
have passed courses in all GE subareas. At 
the end of each academic year, some students 
randomly drop out of the university based on 
input retention rates. They are counted and 
then removed from the model. Continuing 
students return to the registration station for 
the next term. After 45 terms (i.e., 15 years) 
have been simulated, the model reaches the 
end of the run and writes out key summary 
statistics. 

From a process perspective, the BUF 
and LODGE models are quite similar, e.g., 
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both simulate courses being taken by students 
in three terms per academic year (fall, spring, 
and summer), and neither tracks detailed 
student characteristics such as GPA. 
However, some changes had to be made to 
the BUF model as it was adapted to the flow 
of students through the lower division 
requirements of GE, as delineated in Table 1. 
Perhaps the most important change is that the 
LODGE model simulates activity not at the 
individual course level but at the subarea 
level, which is comprised of multiple courses. 
We felt that explicitly representing each of 
the hundreds of GE courses in the simulation 
model would prove too difficult and time 
consuming, without adding significant 
insights.  

The LODGE model makes three other 
important structural assumptions. First, it 
only tracks students who arrive as First Time 
Freshmen, and assumes they have not 
completed any GE requirements prior to 
arrival. While some upper division transfer 
(UDT) students may still need a few GE 

courses, this number is assumed to be 
negligible. Second, the model does not 
represent subarea B3 because many lab 
science courses are actually part of a 4-unit 
science course in subareas B1 and B2, while 
others exist as stand-alone 1-unit courses. 
Third, when registering for classes, freshmen 
are actually given highest priority (once 
special case students have been 
accommodated), followed by seniors, juniors, 
and sophomores. The model approximates 
this priority scheme by assigning each 
student a priority number at the start of each 
term equal to 1 ∙ ሺݐ ൑ 3ሻ ൅ 2 ∙ ሺݐ ൒ 10ሻ ൅
3 ∙ ሺ7 ൑ ݐ ൑ 9ሻ ൅ 4 ∙ ሺ4 ൑ ݐ ൑ 6ሻ , where t 
indicates how many terms have started since 
the student arrived on campus, and the 
mutually exclusive logical expressions in 
parentheses evaluate to either one (if true) or 
zero (if false). The registration queue 
processes students with lower priority 
numbers before those with higher numbers. 
 

 
TABLE 1. RELATIONSHIP BETWEEN THE BUF AND LODGE MODELS. 

 BUF Model LODGE Model 
Entities FTF and UDT students FTF students only 
Resources 19 business core courses 13 GE areas and subareas, each 

comprised of multiple courses 
Prerequisite 
Structure 

Extensive, with up to six prerequisites 
per course 

Minimal, with only area E and subarea 
C3 having one prerequisite each 

 
Key  
Input  
Data 

Core course load distribution, by term; 
Capacity by course, year & term; 
Incoming FTF, UDT, by year & term; 
Pass rates, by course; and 
Retention rates, by year 

GE course load dist., by year & term; 
Capacity by subarea, year & term; 
Incoming FTF, by year & term; 
Pass rates, by subarea; and 
Retention rates, by year 

 
Performance 
Measures 

ETD: Elapsed time to degree for  
   FTF and UDT; and 
6YGR, 4YGR: 6-year and 4-year     
   graduation rates for FTF and UDT 

ETC: Elapsed time to complete lower   
   division GE requirements; and 
PctComp: Percent of GE requirements 
   completed by students within 3 years 

Gathering input data for the LODGE 
model was challenging because SFSU does 
not report data aggregated by GE area. The 

following describes the model’s five major 
inputs and assumptions related to them.  
1. The number of incoming FTF for terms 

from Fall 2014–Fall 2018 come from the 
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actual number of incoming FTF found on 
SFSU’s Office of Institutional Research 
website (ir.sfsu.edu). For each term after 
Fall 2018, the number of incoming FTF 
was taken to be the moving average of the 
values for that term in the two preceding 
years. 

2. Subarea capacities for terms from Fall 
2016–Fall 2018 were found by 
aggregating actual enrollment data 
(found at ir.sfsu.edu) from all courses 
within each subarea. However, summer 
enrollments by subarea are not available, 
so they were estimated by multiplying the 
fall plus spring enrollments in each 
subarea by the summer’s total enrollment 
relative to that of the preceding fall and 
spring semesters’ enrollments. Capacities 
for terms prior to Fall 2016 are assumed 
to be the same as those of the 
corresponding term during AY 2016-17; 

those in terms after Fall 2018 were taken 
to be the moving average of the two 
preceding years’ values. Enrollments 
(seats occupied) are used for capacities 
rather than seats offered because we want 
model behavior to be consistent with 
what actually happened in the past. 

3. Student GE course loads were estimated 
by examining the transcripts of a random 
sample of 100 students who began as FTF. 
The number of GE classes taken per term 
in each of their first three years was 
recorded and analyzed to find a GE 
course load distribution by student year 
and term (see Table 2). The distributions 
in the fall and spring of each year were 
similar to one another, and very different 
from those in the summer. Students in the 
system after three years are assumed to 
take on a GE course load from the third 
year distributions. 

TABLE 2. GE COURSE LOAD DISTRIBUTIONS AT SFSU BY STUDENT YEAR AND TERM. 

Student Year and Term 

Number of GE courses taken by a student   
0 1 2 3 4 5 Mean 

Year 1: Fall & Spring (%)   0.5   3.5 15.0 34.5 31.5 15.0 3.38 

Year 1: Summer (%) 82.8 13.1   3.0   1.0  0.22 

Year 2: Fall & Spring (%)   5.7   7.7 29.4 29.9 21.1   6.2 2.72 

Year 2: Summer (%) 95.5   2.2   1.1   1.1  0.08 

Year 3+: Fall & Spring (%) 21.6 34.6 22.8 16.0   4.3   0.6 1.49 

Year 3+: Summer (%) 94.3   5.7  0.06 

 
4. Subarea pass rates are based on 

aggregated numbers of students who 
passed courses within each subarea 
during Fall 2016, the most recent term for 
which data are available at ir.sfsu.edu. 

5. Student retention rates applied in the 
LODGE model at the end of each of the 
first three years come from actual first-, 
second-, and third-year retention rates 
(80.1%, 87.1%, and 94.7%, respectively) 
for the Fall 2011 entering cohort, the 
most recent cohort for which data are 

available at ir.sfsu.edu. Retention rates 
applied after the third year are assumed to 
remain constant at 94.7%. 

 
IV. EXPERIMENTS WITH THE 
LODGE MODEL 
 

Each replication of the LODGE 
model simulates 15 academic years, from 
Fall 2014 through Summer 2029, with 
historical input data driving the model for the 
first four and a half years of each replication. 
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To avoid start-up bias as well as end-of-run 
effects (from students who enter SFSU but do 
not finish the GE curriculum by the end of 
year 15), output below reflects system 
performance from years 8-10 only. Key 
performance measures are the percentage of 
GE requirements that students complete in 
three years (PctComp) and the elapsed time 
(in years) taken by students to complete all 
GE requirements (ETC). Model results given 
below represent means across five 
replications. 

Unfortunately, SFSU does not report 
any performance data about the GE 

curriculum, so the only model validation we 
could conduct was to compare model output 
to statistics from the 100 sampled transcripts 
used to estimate the model’s GE course load 
distributions. For each of the two 
performance measures of interest, Table 3 
indicates that there is overlap in the 95% 
confidence intervals for the population mean 
generated by the model and by the sample 
data, implying that model behavior is 
consistent with data from the real system. 

 

 
TABLE 3. COMPARING LODGE MODEL PERFORMANCE TO ACTUAL DATA. 

 100 Sampled Transcripts LODGE Model 
Performance Measure mean 95% CI hw mean 95% CI hw 
Elapsed time to complete GE (years) 2.69 0.19 2.85 0.03 
Pct. of GE completed in 3 years (%) 93.3 2.4 91.7 0.3 

 
 

In the experiments described below, 
proposed changes to the system were all 
assumed to start at the beginning of the sixth 
academic year (Fall 2019). For ease of 
presentation, model output from all 
experiments run are given in Table 4 and then 
discussed in turn in the following subsections. 
The input parameters PassRate and 
RetRate shown in Table 4 refer to additive 
changes in base case area pass rates and year-
to-year retention rates, respectively; CapMult 
and DmdMult to multiplicative changes in 
base case area capacities and incoming 
numbers of FTF students, respectively. 

 
 
 
 
 
 

 
4.1. Higher Area Pass Rates 
 
 The first experiment examined the 
potential impact from higher pass rates of 
students taking courses in all 13 GE subareas. 
In particular, pass rates in all subareas (which 
averaged 88.5% across all GE areas in Fall 
2016) were increased by one to five 
percentage points. As seen in Figure 2, both 
performance measures steadily improve with 
students passing their courses at higher rates: 
for each percentage point increase in pass 
rates, PctComp rises by about 0.62 
percentage points, while ETC drops by about 
0.06 years. A five percentage point increase 
in pass rates, for example, could decrease the 
elapsed time to complete GE by nearly a third 
of a year (i.e., one term). 
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TABLE 4. RESULTS FROM ALL LODGE MODEL EXPERIMENTS. 
 INPUT PARAMETER PERFORMANCE MEASURE 

PassRate RetRate CapMult DmdMult ETC (yrs) PctComp 
BASE CASE 0 0 1 1 2.85 91.7 
EXPMT. 1 
(FIG. 2) 

1 0 1 1 2.77 92.4 
2 0 1 1 2.70 93.1 
3 0 1 1 2.65 93.8 
4 0 1 1 2.61 94.1 
5 0 1 1 2.54 94.9 

EXPMT. 2  
(FIG. 3) 

0 1 1 1 2.88 91.6 
0 2 1 1 2.89 91.6 
0 3 1 1 2.97 90.9 
0 4 1 1 2.98 91.2 
0 5 1 1 3.10 89.9 

EXPMT. 3 0 1 1.02 1 2.82 91.9 
0 2 1.04 1 2.80 92.5 
0 3 1.06 1 2.80 92.6 
0 4 1.08 1 2.82 92.6 
0 5 1.10 1 2.81 93.1 

EXPMT. 4  
(FIG. 4) 

0 0 0 0.90 2.73 93.5 
0 0 0 0.94 2.74 93.0 
0 0 0 0.97 2.78 92.3 
0 0 0 1.00 2.85 91.7 
0 0 0 1.03 2.91 91.1 
0 0 0 1.07 2.99 89.9 
0 0 0 1.10 3.24 87.1 

 

4.2. Higher Retention Rates 
 
 The second experiment considered 
the possible effects of students being retained 
at higher rates from year to year than is 
currently the case. Retention rates in the 
model determine whether or not each student 
remains in school for another year; they were 
increased in this experiment by one to five 
percentage points (see Figure 3). Perhaps 
surprisingly, both performance measures are 
slightly degraded by higher retention rates. 
While retaining a larger proportion of 
students each year is desirable in many 
respects, doing so effectively creates more 

demand for classes and, without additional 
resources, actually impedes the overall 
ability of students to progress through the 
curriculum. Higher retention rates need to be 
accompanied by greater course capacities in 
order to maintain the status quo. This can be 
seen in the third section of Table 4 where a 
set of five scenarios paired each percentage 
point increase in the retention rate with a two 
percentage point increase in the capacity of 
all GE areas. Doing so enables ETC to remain 
at its base case value while PctComp inches 
up modestly. 
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FIGURE 2. IMPACT OF HIGHER PASS RATES. 

 
 

 

 

FIGURE 3. IMPACT OF HIGHER RETENTION RATES. 
 

4.3. Changes in Incoming FTF Demand 
 
 Finally, the last set of experiments 
performed with the LODGE model involved 
altering the demand, i.e., the incoming 
number of FTF students. The demand 

multiplier parameter (DmdMult) was 
changed from 0.90 to 1.10 so that the system 
was subjected to both decreases from and 
increases to base case enrollment. Here, the 
direction of the results was as expected: as 
demand dropped performance generally 
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improved. More specifically, each 
percentage point drop in base case demand 
caused ETC to drop by about four-tenths of a 
percent and PctComp to rise by two-tenths of 
a percent. However, as demand increased 
above its base case value, especially beyond 
seven percent, performance deteriorated 

more rapidly, e.g., a 10% increase in demand 
increased ETC by almost 0.4 years (14%) and 
reduced PctComp by 4.6 percentage points 
from their respective base case values. 
 

 

 

FIGURE 4. IMPACT OF CHANGES IN DEMAND. 
 
 

V. CONCLUSION 
 
 This article has described how a 
model previously built to analyze the flow of 
students within a college of business’s core 
curriculum was adapted to simulate the flow 
of students through a large public 
university’s lower division general education 
curriculum. The resulting LODGE model 
was used to assess the potential impact on key 
performance measures due to changes in pass 
rates, retention rates, curriculum capacity, 
and incoming student enrollment. Insights 
gained from such experiments could prove 
helpful in deciding how the university should 
alter its policies and allocate resources. For 
example, model output indicates that higher 
course pass rates would reduce the elapsed 

time to complete the GE program, and thus 
help lower the university’s average elapsed 
time to degree. Achieving higher course pass 
rates might require the campus to invest more 
in tutoring resources for difficult subjects, 
intervening when students are doing poorly 
in courses, developing mentoring programs, 
and so on. 

Our experimentation was somewhat 
limited by access to data that would have 
made more detailed research possible. For 
example, it would have been useful to know 
summer enrollment rates for GE courses. We 
also would have preferred population data on 
enrollment patterns to manually-created 
sample data, which are more prone to error 
and bias. 
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The LODGE model could also be 
used to run other experiments, such as testing 
the impact of changes in the student GE load 
distribution (e.g., what if students were 
advised to take more GE courses in their first 
two years than they currently do?) and in the 
university’s registration priority scheme. It 
could even be used to assess the potential 
impact of changes in the structure of the GE 
program itself, such as that made recently at 
SFSU when it removed Written English II 
(formerly subarea A4) from area A in order 
to comply with CSU Executive Order 1100 
(White, 2017). In the wake of this change, the 
GE program at SFSU is somewhat in a state 
of flux, with the restructuring having 
repercussions on courses in other areas of GE 
and beyond. Simulating the changes in 
advance of their implementation might have 
provided some reassurance that their impact 
would be positive for students. 
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