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We consider a continuous review inventory system where demand is a mixture of a deterministic 
component and a random component that follows a compound Poisson process. Unmet demand is 
backordered and a two-number (s,S) policy is used to control inventory. When inventory drops 
below level s, an order is placed to replenish up to level S. The steady state distribution of inventory 
level is derived using the level crossing approach. We establish that this distribution is an 
increasing exponential function of inventory level. From the steady state distribution, the exact 
total expected cost function, consisting of setup costs and inventory holding and backorder costs, 
is determined. We propose a heuristic that gives a simple closed-form solution with near-optimal 
performance. We find that the standard EOQ with backorders overestimates S and underestimates 
s and can be a poor approximation to the optimal policy. 
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I. INTRODUCTION 

 
The problem we study is a continuous 

review inventory system for a single product 
with a fixed setup cost for ordering, and 
linear inventory holding and backorder costs. 
Demand for the product is a mixture of two 
parts: a constant deterministic component 
and a random component. We assume that 
the random component follows a compound 
Poisson process and the size of each demand 
request is an exponential random variable. 
This type of demand process is seen in 
practice where a firm sells a product through 
two different channels. One channel 
generates more or less constant demand from 

long-standing contracts, while the other 
channel represents customers with 
unscheduled random orders. Sobel and 
Zhang (2001) provide additional examples.  

We note that the addition of a 
constant demand component to the 
compound Poisson demand might seem 
innocuous at first glance; however, it 
complicates the analysis because system 
transitions can occur continuously in time in 
addition to those that occur at demand arrival 
epochs. See Presman and Sethi (2006) for 
further support of this point.  

We assume that the inventory control 
policy is of the ,  type. When inventory 
goes below level s, an order is placed to bring 
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the inventory level up to level S. We assume 
that deliveries are instantaneous. Under our 
demand and cost structure, namely, mixture 
of constant and Poisson demand components, 
fixed ordering, linear inventory holding, and 
backorder costs, Presman and Sethi (2006) 
show that an ,  policy minimizes the long 
run average costs.  

The standard EOQ model with 
backorders, which assumes that demand is 
both deterministic and uniform, is often used, 
even when demand is uncertain, by using the 
expected demand rate in place of the 
deterministic demand rate. This approach 
may not work well when demand has a high 
degree of randomness. As we shall see, the 
EOQ solution overestimates S and 
underestimates s and leads to poor 
performance when demand exhibits 
relatively large random jumps.  

In this paper, we derive an exact 
expression for the stationary distribution of 
inventory level. We also develop a near-
optimal simple, closed-form solution to our 
problem. This solution takes into account the 
effect of randomness in the demand process 
and offers near-optimal performance without 
any additional computational burden over the 
standard EOQ model with backorders.  

As noted before, our demand 
structure, where transitions can occur at 
demand arrival epochs (i.e. Poisson arrivals) 
as well as continuously in time due to 
constant demand, adds complexity to the 
analysis. The continuous transitions make the 
process a continuous-time, continuous state 
space process and our problem cannot be 
modeled as a semi-Markov decision process. 
We find that the level crossing approach is 
useful to analyze our problem and derive the 
stationary distribution of demand. We 
describe this method later. 

The paper is organized as follows. 
Section 2 reviews the related literature. In 
Section 3, we present the inventory problem 
and use the level crossing approach to derive 

the stationary distribution of inventory level. 
In Section 4, the exact expected cost function 
is presented, from which the optimal ,  
policy is determined. In Section 5, we 
describe our heuristic and derive a simple 
closed-form solution for the ,  policy 
with near-optimal performance. Section 6 has 
a full-factorial numerical study that shows 
the effectiveness of our heuristic policy. In 
Section 7, we consider some special cases. 
We show how our analysis applies to the case 
where demand is only a compound Poisson 
process (no constant component) and we give 
a simple closed-form solution for the optimal 
,  policy. We also show how our model 

reduces to the EOQ model when demand is 
only deterministic. Finally, in Section 8, we 
present concluding remarks. 
 
II. LITERATURE REVIEW 
 

The literature on continuous review 
inventory systems is vast. Here we limit the 
discussion to relevant areas of research.  

In the following, we discuss work that 
models demand as mixture of constant and 
compound Poisson processes. Presman and 
Sethi (2006) prove that an ,  policy is 
optimal in a continuous review inventory 
system with a fixed cost of ordering. Sobel 
and Zhang (2001) study a periodic review 
inventory model and prove that a modified 
,  policy is optimal if there is a fixed cost 

of ordering. The above work establishes the 
optimality of the ,  policy with this 
demand process, but does not provide the 
stationary distribution of inventory level, nor 
closed-form solutions for the policy. Our 
analysis in this paper derives, for the first 
time, exact expressions for the stationary 
distribution of inventory and expected costs. 
We find that the stationary distribution is an 
exponentially increasing function of 
inventory level. We propose an approximate 
expected cost function that allows for a 



Katy S. Azoury, Julia Miyaoka 
A Simple EOQ-like Solution to an Inventory System with Compound Poisson and Deterministic Demand 

 
Journal of Supply Chain and Operations Management, Volume 16, Number 2, November 2018 

 
188 

simple closed-form solution that looks like 
the EOQ with backorders. 

To derive the stationary distribution 
of inventory, we use the level crossing 
method, which was initially developed to 
obtain the stationary probability distribution 
of waiting time in queues (Brill and Posner 
1977, 1981). This method analyzes a 
stochastic process where the state of the 
process undergoes upward or downward 
jumps according to a Poisson process. Based 
on the sample path, one develops balance 
equations from which the steady-state 
distribution of waiting times can be derived. 
In addition to applications in queuing, this 
method has been used in other areas such as 
inventory systems, risk models in insurance, 
and control policies for a dam. An overview 
of this method and applications is in Brill 
(2008). 

As for applications of the level 
crossing method in inventory problems, we 
discuss a few representative papers here. The 
first such work by Azoury and Brill (1986) 
derives the steady-state distribution of 
inventory level for a perishable product. 
Other work in this area include Azoury and 
Brill (1992) who study an inventory system 
with random lead time, Brill and Chaouch 
(1995) who consider variations in demand 
rate at random points in time, and Mohebbi 
and Posner (1999) who study lost sales and 
emergency orders. Chaouch (2001) studies 
an inventory system where demand is 
modeled as a mixture of constant and 
compound Poisson processes, deliveries from 
the supplier to the retailer follow a Poisson 
process at rate θ, and, at each replenishment 
epoch, inventory is brought up to a fixed level 
S. This replenishment policy is not of the 
,  type. Instead, the decision variables are 

the rate of delivery θ and the fixed order-up-
to level S. More recently, Chaouch (2007) 
analyzes an inventory model where sellers 
offer price-discounting strategies at random 
times to clear inventory.  

The work in this paper is an extension of 
Azoury et al (2012). In Azoury et al (2012) 
demand was also modeled as a mixture of 
constant and compound Poisson processes, 
but backorders were not allowed (i.e. s = 0).  
When backorder costs are finite, the 
assumption of not allowing backorders can 
lead to large errors (Gallego and Roundy, 
1992). Here we explicitly incorporate 
backorders into the model 
 
III. STEADY-STATE ANALYSIS OF 
INVENTORY PROBLEM 
 
3.1 Description of Inventory Problem 
 

The problem that we study is a 
continuous review inventory system for a 
single product. Demand for the product is a 
mixture of two demand components: a 
deterministic component with a constant 
demand rate D and a random component 
where demand arrives according to an 
exponential distribution with rate λ and each 

demand size is exponential with mean  . 

There is fixed cost K each time an order is 
placed and we assume instantaneous 
replenishment (i.e. no lead-time). Demand is 
backordered when there is not sufficient 
inventory on hand. We assume linear 
inventory holding and backorder costs per 
unit time, denoted by h and b respectively. 

The state space for this inventory 
system is characterized by the inventory level 
x. We assume that a two-critical number 
inventory policy ,  is used where an order 
is placed when the inventory level goes 
below level s and enough is ordered to bring 
the inventory up to level S.  

We note that the optimal value for s 
will always be less than or equal to zero 
because an s = 0 will always outperform an s 
greater than zero. Neither s = 0 nor s > 0 
results in backorder costs and s = 0 has lower 
inventory holding costs than s > 0. 
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In the following, we describe how the 
inventory level evolves over time within an 
order cycle. At the start of a cycle, the 
inventory level is S. Constant demand 
decreases the inventory level continuously 
and random demand drops the inventory in 
jumps at demand arrival epochs. When the 

inventory level falls below s, a replenishment 
order is triggered to bring the inventory level 
up to S. The sample path for the inventory 
level is in Figure 1, where x represents an 
inventory level between s and S. 

 
 

 

 
 

FIGURE 1. SAMPLE PATH FOR THE INVENTORY LEVEL. 
 
3.2. Derivation of Steady-State 
Distribution of Inventory Level 
 

Since demand has a random 
component, the inventory level x(t) at time t 
is a stochastic process. We are interested in 
the steady-state distribution of the inventory 
level as t → ∞.  We note that a steady-state 
distribution exists because the inventory level 
will hit level S, which leads to regenerative 
cycles that start and stop at this state. To get 
this distribution, we apply the level crossing 
methodology to write balance equations by 
equating exit rates to entrance rates from 
inventory states. These balance equations are 
solved to obtain the stationary distribution of 
the inventory level. We use the following 
notation:  
s = Reorder point level 
S = Order-up-to level 
h = Inventory holding cost per unit per unit 

time 

b = Backorder cost per unit per unit time 
K = Fixed cost per order 
D = Demand rate for constant component of 

demand 
λ = Poisson demand arrival rate  

 = Mean demand size of Poisson arrivals 

g(x) = Stationary distribution of the inventory 
level x 

Referring to Figure 1, we equate the 
down-crossing and up-crossing rates for 
inventory level x between s and S. The down-
crossing rate of level x is 

 

           
for  s < x < S.                       (1)  
 
The first term is the down-crossing rate of 
level x due to the continuous transitions in 
inventory level from the constant demand. 
The second term is the down-crossing rate of 
level x due to the jumps from the compound 
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Poisson demand. We note that the integral in 
the second term represents the probability of 
being at any inventory level y between x and 
S and having a demand jump bigger than y – 
x. The up-crossing rate of level x equals the 
down-crossing rate of level s, which is  
 

.          (2) 
 
Equating down-crossing and up-crossing 
rates of level x gives: 
	

		

		 	
for  s < x < S.                                            (3) 
 
We have another balance equation at level S, 
which we write as  
 

.  (4) 
 
The left-hand side of (4) represents the rate 
out of level S. This rate is due to only the 
continuous transitions out of level S from 
constant demand (no jumps). The right-hand 
side of (4) is the rate into level S, which is 
equal to the down-crossing rate of level s in 
(2). Note that if we plug in x = S in (3), the 
down-crossing rate due to jumps (second 
term in left-hand side of (3)) is zero and we 
get (4); hence (3) is valid for any x where s < 
x < S.  

Finally, the stationary distribution of 
the inventory level must satisfy the following 
normalizing condition:  

 

1.           (5) 
 
Equations (3), (4), and (5) are sufficient to 
determine the stationary distribution g(x).  

In the following, we show the steps 
that solve for g(x). We convert the integral 

equation (3) into a differential equation by 
taking derivatives of both sides. 

 

′   
0  for  s < x < S.          (6) 

 
Using the balance equations in (3) and (4), we 
can rewrite (6) as 
 

′    

for  s < x < S.                      (7) 
 
To simplify notation we let R be defined in 
terms of the original demand parameters: 

.            (8) 

 
Equation (7) is a first order differential 
equation and using the standard solution 
approach results in  
 

  for s < x < S      (9) 

 
where A is a constant. By substituting x = S in 
(9), we can solve for the constant A. 

.          (10) 

 
Therefore, 

    

for  s < x < S.           (11) 
 
Using (11) and the normalizing condition in 
(5), we can solve for g(S).  
 

 .       (12) 

 
The density g(x) is an increasing exponential 
function in x for s < x < S. In Fig. 2, we plot 
the density g(x) for an example with the 
following parameters: λ = 5, µ = 0.01, D = 
100, S = 200, and s = -10.  
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FIGURE 2. STATIONARY DISTRIBUTION OF INVENTORY LEVEL. 
 

 
IV. EXPECTED COST FUNCTIONS 
 

The expected cost function is the sum 
of the expected ordering, inventory holding, 
and backorder costs per unit time. We use the 
stationary distribution of inventory level, g(x) 
in (11), to derive the expected cost functions 
in terms of s and S, which we denote by 

, . As noted earlier in Section 3.1, the 
optimal value for s will always be less than or 
equal to zero because an s = 0 will always 
outperform an s greater than zero. Thus, we 
do not need to consider values of s greater 
than zero. The expected cost function ,  
is  

,    

.                   (13) 
 
After substituting (11) in (13), computing the 
integrals, and simplifying, we can write 
 

,  

    

  

  

                  (14) 

 

where 	  as 

shown in (12).     
The optimal , 	policy minimizes 

,  in (14). Unfortunately, it is not 
possible to derive a closed-form solution for 
the optimal policy. Due to the form of , , 
it is not easy to show that the function is 
convex, but our computational experience 
indicates that there is a unique solution. 
Standard nonlinear search techniques can be 
used to find the optimal ,  policy and we 
outline an approach in the Appendix.  

In the next section, we develop a 
convex approximation to ,  in (14), 
from which near-optimal closed-form 
solutions are derived. 
 
V. APPROXIMATION AND CLOSED-
FORM SOLUTION 
 

We develop an approximation to 
,  in (14) by noting that the exponential 

terms are negligible. First, we make a modest 
assumption that, for typical applications, S is 
reasonably large such that  is negligible. 
(Note that R is positive.) This assumption is 
backed by extensive numerical studies on a 



Katy S. Azoury, Julia Miyaoka 
A Simple EOQ-like Solution to an Inventory System with Compound Poisson and Deterministic Demand 

 
Journal of Supply Chain and Operations Management, Volume 16, Number 2, November 2018 

 
192 

wide range of parameter values. Since s < 0, 
then it follows that  is also negligible. 
From this assumption, it follows that the 
approximate expected cost function, which 
we denote by , , can be written as  

 
s, S  

  

                                    (15) 

 

where    .       (16) 

Here  is an approximation to  after 
dropping the exponential term. 

To establish convexity of the 
approximate cost function and to derive the 
closed-form solutions, we find that an 
alternative representation is more convenient. 
This alternative representation involves the 
following change of variable, defining Q as 
follows: 

 

	 .                                (17) 

 
Applying the change of variable, Q in (17), to 
(15) results in 
 

,   

  

.                                               (18) 

 
Note that, for a given s, the expected cost 
function in (18) has the same form as the 
classic EOQ model with a hyperbolic term in 

Q and a linear term in Q. With the 
representation of ,  in (18), Q is the 
expected order quantity.  

The function ,  in (18) is 
convex in s and Q under the following mild 
condition:  
 

0.       (19) 

 
See Appendix for details. 

From the first order conditions of (18), 
we get the following closed-form solution for 
minimizing (18). 
 

 ,  

	 ̂ ,   and   ̂ .       (20) 

 
The convexity condition in (19), assures that 
(20) is a unique solution to (18). In the next 
section, we perform a numerical study and 
show near-optimal performance of this 
closed-form solution. 
  
VI. NUMERICAL STUDY 
 

We designed a full factorial 
numerical study by varying the parameters K, 
b, λ, µ, and D, each over two settings, one low 
and one high. Without loss of generality, we 
fixed h at 1. The reason is that, of the three 
cost parameters, we only have to vary two of 
them. The parameter settings are shown in 
Table 1. 

TABLE 1. NUMERICAL STUDY PARAMETER SETTINGS. 

 K h b λ µ D 
Low 200 1 5 1 0.01 5 
High 1000 1 100 10 0.10 20 

 
A full factorial of the parameters settings in 
Table 1 generated 32 trials.  

The purpose of this study is to assess 
how well our heuristic policy performs 
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compared to the optimal policy. First, we 
determined the optimal policy (via search) 
that minimizes the exact expected cost 
function ,  in (14).  Then, we calculated 
the heuristic policy from the closed-form 
solution in (20). For each of the two policies, 
we computed the exact expected total cost 

and calculated the error from optimal for the 

heuristic policy, namely 
̂ , ∗, ∗

∗, ∗ .	  In 

Table 2 we summarize the results. The 
optimal policy, the heuristic policy and the 
percentage error of the heuristic are shown in 
the last three columns. 

TABLE 2. NUMERICAL STUDY RESULTS. 

 Model parameters  Optimal Heuristic Heuristic 
Trial 

# 
K b D λ µ (s*, S*) (ŝ, Ŝ) Error (%) 

1 200 5 5 1 0.01 (-33, 68) (-33, 68) 0.000% 
2 200 5 5 1 0.10 (-14, 64) (-14, 64) 0.000% 
3 200 5 5 10 0.01 (-114, 472) (-114, 472) 0.000% 
4 200 5 5 10 0.10 (-37, 177) (-37, 177) 0.000% 
5 200 5 25 1 0.01 (-37, 106) (-37, 103) 0.007% 
6 200 5 25 1 0.10 (-22, 105) (-22, 105) 0.000% 
7 200 5 25 10 0.01 (-115, 480) (-115, 480) 0.000% 
8 200 5 25 10 0.10 (-41, 196) (-41, 196) 0.000% 
9 200 100 5 1 0.01 (-2, 83) (-2, 83) 0.000% 

10 200 100 5 1 0.10 (-1, 70) (-1, 70) 0.000% 
11 200 100 5 10 0.01 (-6, 523) (-6, 523) 0.000% 
12 200 100 5 10 0.10 (-2, 194) (-2, 194) 0.000% 
13 200 100 25 1 0.01 (-2, 122) (-2, 120) 0.006% 
14 200 100 25 1 0.10 (-1, 115) (-1, 115) 0.000% 
15 200 100 25 10 0.01 (-6, 532) (-6, 532) 0.000% 
16 200 100 25 10 0.10 (-2, 214) (-2, 214) 0.000% 
17 1000 5 5 1 0.01 (-82, 313) (-82, 313) 0.000% 
18 1000 5 5 1 0.10 (-32, 151) (-32, 151) 0.000% 
19 1000 5 5 10 0.01 (-258, 1191) (-258, 1191) 0.000% 
20 1000 5 5 10 0.10 (-84, 409) (-84, 409) 0.000% 
21 1000 5 25 1 0.01 (-90, 368) (-90, 368) 0.000% 
22 1000 5 25 1 0.10 (-48, 239) (-48, 239) 0.000% 
23 1000 5 25 10 0.01 (-261, 1206) (-261, 1206) 0.000% 
24 1000 5 25 10 0.10 (-91, 448) (-91, 448) 0.000% 
25 1000 100 5 1 0.01 (-4, 350) (-4, 350) 0.000% 
26 1000 100 5 1 0.10 (-2, 165) (-2, 165) 0.000% 
27 1000 100 5 10 0.01 (-14, 1308) (-14, 1308) 0.000% 
28 1000 100 5 10 0.10 (-5, 446) (-5, 446) 0.000% 
29 1000 100 25 1 0.01 (-5, 408) (-5, 408) 0.000% 
30 1000 100 25 1 0.10 (-3, 260) (-3, 260) 0.000% 
31 1000 100 25 10 0.01 (-14, 1324) (-14, 1324) 0.000% 
32 1000 100 25 10 0.10 (-5, 489) (-5, 489) 0.000% 
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Our heuristic policy is essentially the 
same as the optimal policy. In 30 of the 32 
trials, the heuristic is identical to the optimal 
policy. There is a minor difference between 
the heuristic and the optimal in trials 5 and 13. 
The largest error was 0.007% in Trial 5. 

As mentioned earlier, the standard 
EOQ policy is often used because of its 
simplicity. The EOQ model with backorders 
has the following cost function and optimal 
policy: 

 

,

                     (21) 

 

 ,   	 

, and         (22) 

 
where  represents the demand rate and the 
subscript E refers to the EOQ.  If we were to 
use the policy in (22) in our setting, we would 

set  equal to our expected demand, . 

We tested this EOQ policy in all 32 trials and 
the performance was suboptimal with errors 
as high as 13.7%. 

Comparing the closed-form solutions 
in (20) and (22), we see that the order 
quantity from the EOQ is larger than the 
expected order quantity in our heuristic (i.e. 

). It is also clear from (20) and (22) 
that ̂ , and . Hence, the EOQ 
simplification is biased on the side of lower 
reorder levels and higher order-up-to levels 
as compared to our heuristic. Our heuristic 
has a simple closed-form solution like the 
EOQ, accounts for randomness in demand, 
and provides near-optimal performance. 
Hence, our heuristic offers the simplicity of 
the EOQ with the added benefit of near-
optimal performance. 
 

VII. SPECIAL CASES INCLUDING 
THE EOQ MODEL 
 

Case when D = 0 (only compound 
Poisson demand): For the case of only 
compound Poisson demand, we derive a 
closed-form solution that is optimal. In this 
case, there is a nonzero probability that the 
inventory level is at S because when the 
inventory level hits S it remains there until a 
demand jump occurs. We let  denote the 
probability that inventory is at level S. Using 
the level crossing approach, it can be shown 
that the stationary distribution of inventory 
level has a point mass at level S and is 
uniform for inventory levels x, s < x < S. The 
details are in the Appendix. The stationary 
distribution for level x is 

 

    for  x = S    

and   for  .        (23) 

 
We note that this density function cannot be 
obtained by plugging D = 0 in g(x) in (11) 
because of the point mass at level S. Hence, 
the case of D = 0 requires its own balance 
equations.  

The expected cost function ,  is 
   

, .  (24) 

 

Applying the change in variable, 

, to (24) results in 
 

,   

.         (25) 

 
It is straightforward to show that ,  is a 
convex function in s and Q. From the first 
order conditions the optimal solution is 
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∗  , 

∗ ∗, and ∗ ∗ ∗ .    (26) 

 
 Case when λ = 0 (only deterministic 
demand): For the case of only deterministic 
demand, by setting λ = 0 in (11), g(x) reduces 

to  for . The cost function in 

(14) reduces to the EOQ with backorders cost 
function in (21) by setting λ = 0 in (14) and 
applying the change in variable, Q = S – s.  
 
VIII. CONCLUSION 
 

In this paper, we studied a 
continuous-review inventory system where 
demand is a mixture of a deterministic 
component and a compound Poisson 
stochastic component. Unmet demand is 
backordered. We assumed a two-critical 
number policy , . If inventory is below 
level s, then an order is placed to bring the 
inventory up to level S. We used the level 
crossing method to derive the steady-state 
distribution of the inventory level. We then 
derived the exact expression for the expected 
cost as a function of s and S. We outlined how 
the optimal ,  policy can be determined 
from the expected cost function. In addition, 
we proposed an approximate expression for 
the expected cost function that is easy to 
minimize with a near-optimal, closed-form 
solution for , . We ran a numerical study 
to verify the near-optimal performance of our 
closed-form formulas. In the case of only 
Poisson compound demand, we present 
closed-form solutions for the optimal policy. 
Finally, we demonstrated that using the 
standard EOQ formula with backorders 
might be quite suboptimal. 

One direction for future research is to 
extend the work in this paper to the case of 
perishable inventory. Another direction is to 

generalize the demand process to multiple 
compound Poisson demands in addition to 
the deterministic component. As an example 
you could have two different types of 
customers each with its own Poisson arrivals 
( 	and ) and demand jumps ( 	and ). 
In both of the these extensions, we believe 
that the level crossing approach provides a 
promising tool to derive the steady state 
distribution of inventory level from which 
performance measures such as expected costs 
can be determined. 
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APPENDIX 
 
Optimality of , : 

To outline our steps for optimality, 
we find that an alternative representation of 

,  in (14) is more convenient. This 
alternative representation involves the 
following change of variable, defining Q as 
follows: 

 

	 .         (A1) 

 
With this change of variable, we write (12) in 
terms of Q. 
 

       (A2) 

 

where C = . Note that C represents the 

minimum value of Q as defined in (A1) 
because S – s > 0. 

Next, we write ,  as a function 
of s and Q, that is, , .  

 

,   

  

  

  

.            (A3) 

 
In the following, we explain how to 

find the optimal (s,Q) policy which we 
denote by (s*, Q*). It can be shown that for a 
given Q, ,  in (A3) is convex with 
respect to s. The optimal value of s satisfies 
s* = min(0, s) where s meets the first order 
condition of ,  with respect to s. 

 

  

.      (A4) 

 
Using (A4), the expected cost function in (A3) 
can be searched over Q to find the optimal 
(s,Q) policy. The optimal value of S, which 
we denote by S*, follows from the change in 
variable in (A1). 
 
Convexity of ,  

,  in (18) is convex if its 
Hessian is positive definite. The Hessian is 

positive definite if 
, 0  and the 

determinant of the Hessian is greater than or 
equal to zero. It can be shown that 
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, 0   

  
and the determinant of the Hessian matrix of 

,  is 
 

 

    
which is greater than or equal to zero if the 
expression in brackets is greater than or equal 
to zero. 
 
Derivation of the steady-state distribution 
of the inventory level for the compound 
Poisson demand case. 

Equating down-crossing and up-
crossing rates of level x gives 

 

  

   
for s < x < S.            (A5) 
 
Equating the rate out of level S to the rate into 
level S results in 
 

.  
          (A6) 
 
We note that the right-hand side of (A5) is the 
down-crossing rate of level s, which is equal 
to the up-crossing rate of any level x, for s < 
x < S. Similarly, the right-hand side of (A6) 
is equal to the rate into level S. The 
distribution of the inventory level must 
satisfy the normalizing condition: 
 

1.        (A7) 
 
Taking the derivative of both sides of (A5) 
with respect to x and rearranging terms we get 
 

 

.            (A8) 
 
Using the relationships in (A5) and (A6), we 
simplify (A8): 
 

.         (A9) 
 
Using (A9) and the normalizing condition in 
(A7), we solve for  and g(x).  
 

  and     

for  .      
   
 


