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This paper considers multiple approaches for classifying imbalanced data. We compare logistic 
regression and Gaussian Mixture Model (GMM) for classification in conjunction with over-
sampling and under-sampling techniques. When applied to a credit card fraud dataset combined 
with over-sampling, both logistic regression and GMM demonstrate reliable performance. Over-
sampling tends to overperform under-sampling. A combination of resampling and clustering 
methods, such as GMM, is a legitimate alternative to handle imbalanced classification problems. 
Furthermore, we propose a framework to help define a repertoire of tools for combating 
imbalanced learning problems and improving model performance. 
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I. INTRODUCTION 

 
The issue of imbalanced data in 

classification problems, also known as the 
imbalanced class distribution of a dataset, 
refers to the fact that datasets often have 
many more observations or instances in some 
classes than in others. Data imbalance, 
sometimes severe, is prevalent in machine 

learning models of classification. According 
to Sun et al. (2009) and Maheshwari et al. 
(2017), the issues of imbalanced data have 
been observed in many fields, from text 
classification, image recognition, and 
anomaly detection, to medical diagnosis, 
detection of fraudulent calls, detection of oil 
spills, and risk management.   
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Class imbalance, particularly extreme 
class imbalance, causes a tremendous 
challenge for machine learning classification 
models. One of the authors worked on a 
dataset of tens of thousands of computer 
game players. The game players belong to 
two classes: regular players who play the 
games for free (negative class, majority class 
in this case), and VIP members or paying 
customers who pay for advanced game 
features (positive class, also the minority 
class). However, of all the players, less than 
1% are VIP, paying customers. That is, the 
ratio of negative (majority) and positive 
(minority) classes is 99:1. The goal is to build 
classification models that generalize well. A 
naïve baseline model can predict any game 
player in the negative class, i.e., non-paying 
customers. This naïve model will have a 
prediction accuracy of 99%. However, it has 
a false negative ratio of 100% and thus is 
effectively and practically useless. It is tough 
to find a classification model that performs 
well on most key performance metrics with 
severe class imbalance, including but not 
limited to accuracy, false positive and false 
negative ratios, F-score, and ROC curve.  

Resampling and its variants are the 
dominant methods employed to battle the 
issue of class imbalance. The Literature 
Review section below provides more 
information on other techniques such as 
ensemble learning, kernel-based approach, 
and cost-sensitive learning. It is not 
uncommon to combine two or more of these 
methods. Indeed, Wu (2017) combined 
ensemble learning and resampling methods 
to predict future NBA all-stars. Performance 
is mixed, dependent on the nature of datasets. 
Different techniques and their combinations 
are typically experimented to identify a better 
approach for a particular imbalanced dataset.  

Clustering methods, when used to 
combat class imbalance, are considered a 

subcategory of the resampling method, 
according to He and Garcia (2009). They 
reported the usage of k-means, a commonly 
used clustering method, to classify 
imbalanced data. On the other hand, our work 
proposes and adopts a more sophisticated 
clustering algorithm in Gaussian Mixture 
Model (GMM), combined with the over-
sampling technique, to handle imbalanced 
data with two classes. The idea is relatively 
straightforward. After training and test data 
split, we train two Gaussian clusters, one for 
each class. Each class or cluster is then 
described by a Gaussian distribution, with 
parameters identified in model training. Then 
test data are fed into the two Gaussians, 
which classify the data according to the 
resulting probability density. If an 
observation has a higher probability density 
from the first Gaussian than from the second 
Gaussian, we predict that it belongs to the 
first class and vice versa. We can easily 
generate such methods for multi-class 
problems by training more Gaussians, one for 
each class. We also consider the classical 
logistic regression method, combined with 
resampling techniques. Indeed, logistic 
regression with oversampling has provided 
the best performance for the credit fraud 
dataset. It is worth noting that the 
performance can be dataset sensitive. Besides, 
we can much more easily apply GMMs to 
multi-class problems than logistic regression.  

 
II. LITERATURE REVIEW 

 
Sun et al. (2009) offered an excellent 

review of research related to imbalanced data. 
They reported the prevalence of class 
imbalance in practice, ranging from fraud 
detection and medical diagnosis to detection 
of oil spills and manufacturing plants. They 
identified learning difficulties with standard 
classification models, including decision 
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trees, neural networks, Bayesian 
classification, Support Vector Machine, 
associative classifiers, and KNN. They 
reported solutions at both data and algorithm 
levels. At the data level, a popular remedy is 
resampling, oversampling the small class. It 
invites the questions of what is or how to 
decide the optimal class distribution. At the 
algorithm level, a common strategy is to 
choose an appropriate inductive bias. 
Another alternative is cost-sensitive learning, 
taking into consideration the costs of 
different misclassification types. Boosting 
and ensemble learning are also popular 
choices, which combine many a classifier 
trained from the original data to improve 
generalization ability. Performance results 
are mixed. Sun et al. (2009) also suggested 
future research direction in multi-class 
imbalance problems.  

He and Garcia (2009), another review 
on imbalanced learning, provided a different 
categorization framework than Sun et al. 
(2009). He and Garcia (2009) summarized 
solutions to imbalanced learning into four 
broad categories: (1) resampling methods, (2) 
cost-sensitive methods, (3) kernel-based 
methods, and (4) other methods. According 
to He and Garcia, the technique used in this 
paper belongs to a subcategory under 
resampling methods: Cluster-Based 
Sampling Method, usually a Cluster-Based 
Oversampling method (CBO). The CBO 
algorithm, however, only makes use of the k-
means clustering technique. Our methods, on 
the other hand, focus on GMM. He and 
Garcia (2009) also reviewed assessment 
metrics for imbalanced learning. They argued 
that metrics such as F-measure, G-Mean of 
Precision and Recall, ROC curves, and 
Precision-Recall curves combined could 
effectively evaluate imbalanced learning 
methods. Synthetic generation of minority 
class data (SMOTE), one resampling 

technique, has been used to generate a more 
balanced dataset and offset imbalanced data 
limitations. In a more recent review, 
Maheshwari et al. (2017) studied factors such 
as feature selection that influence the dataset 
and lead to data imbalance.      

Rastogi et al. (2018) implemented 
SMOTE in a distributed environment under 
spark. An uncorrelated cost-sensitive 
multiset learning (UCML) approach 
proposed in Wu et al. (2017) is an under-
sampling method. It partitions the majority 
class into multiple blocks, balanced to the 
minority class, and combines each block with 
the minority class to construct a balanced 
sample set. The approach was applied to 
some experimental datasets and 
outperformed some other methods. It is a 
resampling method in nature and does not 
differ from oversampling that duplicates 
minority class. Indeed, it can be troublesome 
when the minority class is minimal, and the 
resulting block is small. On the other hand, 
Krawczyk (2016) offered several unbalanced 
learning research areas focusing on 
applications. It extended the scope to a more 
general imbalanced domain. 

Xiang and Xie (2018) proposed an 
ensemble learning approach to handling 
imbalanced data. They balanced datasets 
with SMOTE, selected SVM, KNN, and 
Logistic Regression as the base classifier, and 
generated the final result by weighted voting. 
The approach demonstrated improvement in 
their experiments with six UCI datasets. A 
similar work is Lu and Wozniak (2019) that 
applied dynamic selection and weighted 
voting to ensemble learning with imbalanced 
data. Chen et al. (2020) proposed an 
alternative cost-sensitive learning approach 
and ensemble learning approach in random 
forest. Chakraborty (2017) combined 
multiple clustering and classification 
methods using an optimization function 
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called EC3 to support both binary and multi-
class classification. He, however, did not 
directly address imbalanced learning. Huang 
et al. (2016) specifically focused on 
imbalanced learning in deep neural network. 
They demonstrated that enforcing tight 
constraints in a standard deep learning 
framework could reduce class imbalance in 
local data neighborhood. 

Methodologically, Prabakaran et al. 
(2019) are more relevant to our work. They 
applied GMMs to small data with more than 
300 clinical samples of breast cancer. There 
are four classes in their model, with a ratio of 
sample sizes being 40% - 39% - 19% - 2%. It 
is a concern that the smallest class has a 
sample size of less than 8, casting doubt on 
the estimation of Gaussian parameters. 
Huang et al. (2005) employed GMMs for 
multiple limb motion classification using 
continuous myoelectric signals and examined 
algorithmic issues such as model order 
selection and variance limiting in GMMS. 
Calo (2007) used GMMs to reduce the 
number of free parameters and developed a 
method called projection pursuit for 
dimensionality reduction. Stepanek et al. 
(2015) modified the Expectation-
Maximization algorithm and applied GMMs 
to the task of signal separation from 
background in high energy physics. Ling and 
Zhu (2017) used a GMM-based classifier to 
tell whether precipitation events will happen 
on a certain day at a certain time from 
historical meteorological data. They achieved 
75% accuracy, 30% precision, and 80% 
recall. Dixit et al. (2011) formulated a generic, 
topic-independent GMM known as the 
background GMM for generative and 
discriminative classification. 

Fernandez et al. (2013) attempt to 
address the class imbalance issue in a multi-
class problem. Experimentally, they 
proposed binarization schemes such as one-

versus-one and one-versus-all, in addition to 
some ad-hoc procedures applied to several 
well-known algorithms, for example, 
decision trees and support vector machines. 

 
III. DATA AND DATA 
PREPROCESSING 

 
We sourced the data from Kaggle 

(https://www.kaggle.com/mlg-ulb/creditcardfraud). 
The dataset recorded 284,807 credit card 
transactions in September 2013 in Europe, 
out of which 492 are frauds. The objective is 
to build classification models that predict 
frauds well. The dataset is highly skewed and 
imbalanced, with the positive class (fraud) 
accounting for only 0.172% of all 
transactions. 

The dataset contains 31 columns: 
 Time: seconds elapsed between each 

transaction and the first transaction in the 
dataset 

 Amount: transaction amount 
 V1 – V28: 28 principal components 

obtained with PCA 
 Class: response variable (1, fraud; 0, 

otherwise) 
The dataset is very clean without 

missing values or outliers. Time is not 
included in our analysis as the time elapsed 
from the first transaction to the current 
transaction is independent of fraud. We thus 
have 29 features in our model: the transaction 
amount and 28 principal components. 
Feature engineering (feature expansion and 
selection) is irrelevant because we want to 
compare different models with the same 
features. Data is normalized to avoid scale 
bias. 

The data was divided randomly into 
training and test set with a ratio of 75:25. For 
uniformity, the train and test sets remain the 
same for all the models considered. 
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IV. METHODOLOGIES 
 
There are several traditional methods 

to handle data imbalance as aforementioned. 
Most of them involve data resampling one 
way or the other. In this study, we consider 
the following models for comparison. 
1. Logistic regression without resampling 
2. Logistic regression with oversampling 

minority class 
3. Logistic regression with under-sampling 

majority class 
4. GMM for classification without 

resampling 
5. GMM for classification with 

oversampling minority class 
While evaluating model performance, 

we focus on precision, recall, and F1-score 
since accuracy is a flawed performance 
metric in imbalanced learning. These metrics 
are directly from the confusion matrix where 
TP is the number of true positives, FP is the 
number of false positives, FN is the number 
of false negatives, and TN is the number of 
true negatives. Therefore, the numbers of 
elements in the actual positive class, the 
actual negative class, the predicted positive 
class, and the predicted negative class are TP 
+ FN, FP + TN, TP + FP, and TN + FN, 
respectively. Precision, recall, and F1-score 
are then defined as follows:  

 Precision = 
்௉

்௉ାி௉
 

 Recall = 
்௉

்௉ାிே
 

 F1 = 
ଶ்௉

ଶ்௉ାி௉ାிே
 (the harmonic mean of 

precision and recall). 
Precision is the ratio of true positive 

among all predicated positive. Higher 
precision means that more predicted positives 
are indeed true positives. Recall is the ratio of 
true positive among all actual positive. 
Higher recall indicates that more true 
positives are indeed predicted as positive. A 
model likely has high precision but low recall 

or vice versa. F1 score strikes a balance 
between precision and recall. F1 is not perfect 
in that it treats precision and recall equally. In 
other words, a false positive is considered as 
bad as a false negative. More often than not, 
one may be a worse outcome and should be 
weighted more than the other. For example, 
people would not mind as much a smoke 
detector going off when there is no fire as the 
smoke detector not sounding an alarm when 
there is indeed a fire. It is possible to take 
different weights of precision and recall into 
account by adopting metrics such as ܨఉ , 
where ߚ  is the times that recall is as 
important as precision. F1 measure is a 
special case of ܨఉ with 1 = ߚ. We employ F1 
measure instead of ܨఉ  to provide equal 
footing in comparing the performance of 
different classification models. 
 
4.1. Logistic Regression without 
Resampling 

 
We adopt a logistic regression model 

without resampling as a benchmark for 
comparison. Although it delivers an accuracy 
of 0.999 on the test dataset, Table 1 below 
demonstrates poor performance measured by 
the recall because FN is high. The model 
incorrectly classifies many true positive 
elements as negative. It is particularly 
troublesome as the model does not catch 
many actual frauds. 

The software generates precision, 
recall, F1-score, and support for each class. 
Support is the number of elements in each 
class. Micro average for each metric is 
computed across both classes, as defined 
earlier. Macro average computes each metric 
independently for each class and then take the 
average. The macro average of recall, for 
example, is the simple average of two recall 
scores, one for each class: (1.00 + 0.64)/2 = 
0.82. The weighted average of, for example, 
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precision is the weighted average of the two 
precision scores weighted by the element 
counts in each class. The majority (in our 
case, negative) class dominates the dataset. 
Values of each performance metric under 
micro average, the weighted average, and the 
negative class are effectively equal after we 
rounded them to the nearest hundredth. 
Performance scores under macro average are 
therefore more meaningful here. 

 
TABLE 1. PERFORMANCE OF 

LOGISTIC REGRESSION WITHOUT 

RESAMPLING. 

 precision recall 
F1-

score 
support 

0 
(negative) 

1.00 1.00 1.00 717070 

1 
(positive) 

0.91 0.64 0.76 132 

Micro avg 1.00 1.00 1.00 71202 

Macro 
avg 

0.96 0.82 0.88 71202 

Weighted 
avg 

1.00 1.00 1.00 71202 

 
 

4.2. Logistic Regression with 
Oversampling Minority Class 

 
In this model, we adopt the 

oversampling method by duplicating the 
minority class. In the end, the support of the 
minority (positive) class is roughly equal to 
that of the majority class. We then run 
logistic regression. The overall accuracy on 
the test set decreases to 0.950. Table 2 below 
shows the oversampling method's 
performance under other metrics: precision, 
recall, and F1 score. 

 

TABLE 2. PERFORMANCE OF 

LOGISTIC REGRESSION WITH 

OVERSAMPLING. 

 precision recall 
F1-

score 
support 

0 
(negative) 

0.93 0.98 0.95 70996 

1 
(positive) 

0.98 0.92 0.95 71162 

Micro avg 0.95 0.95 0.95 142158 

Macro 
avg 

0.95 0.95 0.95 142158 

Weighted 
avg 

0.95 0.95 0.95 142158 

 
As expected, the precision, recall, and 

F1 scores of the negative class dropped 
slightly. We observe, on the other hand, 
remarkable increases in the scores of the 
positive class. Overall, the macro averages of 
recall and F1 scores improve markedly, 
whereas the macro average of precision 
dipped by just one percentage point. The 
main disadvantage of oversampling is that 
duplicating existing examples makes 
overfitting more likely. Furthermore, it 
increases learning time. 

 
4.3. Logistic Regression with Under-
Sampling Majority Class 

 
To implement the under-sampling 

method, we decided to select samples from 
the majority class at random such that the 
support of the majority class roughly matches 
that of the minority class. The overall 
accuracy deteriorated dramatically down to 
0.9145.  The Table below summarizes the 
model’s performance under other metrics. 
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TABLE 3. PERFORMANCE OF 

LOGISTIC REGRESSION WITH 

UNDERSAMPLING. 

 precision recall 
F1-

score 
support 

0 
(negative) 

0.92 0.91 0.92 128 

1 
(positive) 

0.91 0.92 0.91 118 

Micro avg 0.91 0.91 0.91 246 

Macro 
avg 

0.91 0.91 0.91 246 

Weighted 
avg 

0.91 0.91 0.91 246 

 
Table 3 shows that, compared with 

the oversampling method, the under-
sampling approach underperforms in every 
category. One primary reason is that it 
discards many samples in the majority class 
that potentially contains plenty of useful 
information or pattern.  

 
4.4. Classification Using Gaussian Mixture 
Models (GMMs) 

 
In Gaussian generative models, we 

consider any data point or instance in the 
dataset a realization of a Gaussian random 
variable. Each data point is a feature vector ݔ 
of dimension ݀ generated from a Gaussian 
with mean ߤ (must also be of dimension ݀) 
and standard deviation ߪ. In the dataset, each 
feature vector is of 29 dimensions because 
there are 29 features. An underlying 
assumption is that each feature independently 
follows a univariate Gaussian distribution 
with a common standard deviation ߪ. The 
mean of each Gaussian distribution may 
differ. Therefore, each feature vector ݔ 
follows a multivariate Gaussian distribution 

with the following probability density 
function (pdf).  

,ߤ|ݔሺ݌ ଶሻߪ	 ൌ ଵ

ሺଶగఙమሻ೏/మ
݌ݔ݁ ቀି

‖௫ିఓ‖మ

ଶఙమ
ቁ.     (1) 

Note that equation (1) provides the likelihood 
of feature vector ݔ being generated from the 
Gaussian distribution described above. Both 
 ଶ, theߪ are vectors of size 29 whereas ߤ and ݔ
variance, is a positive number. A Gaussian 
distribution represents a cluster.  

All features except one in this dataset 
are principal components. To generate 
principal components, the original input 
features are standardized. The only non-
principal-component feature, transaction 
amount, is also normalized. Therefore, all the 
features are on the same scale and their 
standard deviations are highly comparable. In 
addition, allowing different standard 
deviations is much more computationally 
expensive, if not prohibitive.   

Consider a set of ݊  data points 
generated from the same Gaussian 
distribution described by equation (1). These 
data points are ሺݔሺଵሻ, 	 ⋯ , ሺ௡ሻሻݔ . The joint 
likelihood that these data points are from 
equation (1) is thus 

∏ ,ߤሺ௜ሻหݔ൫݌ ଶ൯௡ߪ	
௜ୀଵ ൌ

∏ ଵ

ሺଶగఙమሻ೏/మ
݌ݔ݁ ቆ

ିฮ௫ሺ೔ሻିఓฮ
మ

ଶఙమ
ቇ௡

௜ୀଵ .    (2) 

We then apply the maximum 
likelihood to maximize the logarithm of 
equation (2) and obtain the following optimal 
estimates of ߤ and ߪଶ. 

ߤ̂ ൌ ଵ

௡
∑ ሺ௜ሻ௡ݔ
௜ୀଵ   (3) 

ොଶߪ ൌ
∑ ቀฮ௫ሺ೔ሻିఓฮ

మ
ቁ೙

೔సభ

௡ௗ
  (4) 

When the positive class and the 
negative class are generated from two 
Gaussian distributions, we can apply the 
formulas above to find the optimal solutions. 
When predicting a new data point, we 
compute the likelihood of this data point 
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generated from either Gaussian distribution. 
If it is more likely to be generated from the 
Gaussian that describes the positive class, we 
then predict or label this data point as positive; 
otherwise, we predict it as negative. 

In either positive or negative class, 
more than one clusters are likely to exist. 
Suppose there exist ܭ  clusters, and a 
multinomial distribution captures the 
probability that a data point is from one of 
these ܭ  clusters. Each cluster is then 
described by a Gaussian distribution, 
characterized by Equations (1) – (4). We end 
up with a Gaussian mixture model (GMM). 
In the GMM, there are 3 ܭ  parameters: 
,ଵ݌ 	⋯ , ;௄݌	 ߤ

ሺଵሻ, 	 ⋯ , ;ሺ௄ሻߤ ଵߪ
ଶ, 	⋯ , ௄ߪ

ଶ , 
where ݌௜  is the probability of a data point 
generated from the ݅௧௛  cluster or Gaussian 
distribution, and ߤሺ௜ሻ  and ߪ௜

ଶ  are the mean 
and variance of the ݅௧௛ Gaussian distribution, 
respectively.  

Suppose, once again, there are ݊ data 
points: ܺ ൌ ሺݔሺଵሻ, 	⋯ , ሺ௡ሻሻݔ . Let vector ߠ 
denote all the 3 ܭ  parameters. The joint 
likelihood of these ݊  data points generated 
from the ܭ Gaussians are as follows: 
ሻߠ|ሺܺ݌ ൌ ∏ ∑ ;ሺ௜ሻݔ௝ܰሺ݌ ߤ

ሺ௝ሻ, ௝ߪ	
ଶܫሻ௄

௝ୀଵ
௡
௜ୀଵ ,(5) 

where ܰሺݔሺ௜ሻ; ,ሺ௝ሻߤ ௝ߪ	
ଶܫሻ  represents the 

probability density function of the ݆௧௛ 
Gaussian. It is, however, impossible to find 
the optimal solution simultaneously to all the 
3 ܭ  parameters. EM (Expectation-
Maximization) algorithm can 
computationally find a local optimum. To 
implement the algorithm, we begin with 
random initialization of ߠ. Then in the E-step, 
we obtain the posterior probability that data 
point ݅ belongs to cluster ݆: 
ሺ݆|݅ሻ݌ ൌ ݔ௝ܰሺ݌

ሺ௜ሻ; ,ሺ௝ሻߤ ௝ߪ	
ଶܫሻ/݌ሺݔሺ௜ሻ|ߠሻ.   (6) 

In the M-step, we maximize the likelihood to 
find the following: 
 ௝݊ ൌ ∑ ሺ݆|݅ሻ௡݌

௜ୀଵ   (7) 

௝̂݌  ൌ
௡ೕ
௡

    (8) 

ሺ௝ሻߤ̂  ൌ ଵ

௡ೕ
∑ ሺ௜ሻ௡ݔሺ݆|݅ሻ݌
௜ୀଵ  (9) 

ො௝ߪ 
ଶ ൌ

∑ ቀ௣൫݆ห݅൯ฮ௫ሺ೔ሻିఓฮమቁ೙
೔సభ

௡ೕௗ
 (10) 

The E-step and M-step are repeated until the 
algorithm converges. We tried different 
initializations to identify a better local 
optimum. 

Once we identify the clusters in each 
class, we apply them to classify a new data 
point. Compute the sum of probability 
densities that this data point belongs to each 
cluster in positive and negative class, 
respectively. We label the data point positive 
if the sum of probability densities from 
positive clusters is higher than that from 
negative clusters, vice versa. We have tried 
different cluster numbers: K =1, K = 3, and K 
= 6. In our studies, K = 1 outperformed the 
other two.  

 Application of GMM to 
classification is a form of under-sampling of 
majority class (negative class in our case). As 
observed in 4.3, under-sampling may 
potentially discard useful information in the 
dataset. We thus consider a combination of 
GMM and oversampling. We first 
oversample the minority class as done in 4.2. 
Then apply GMM to each class.  

 
4.4.1. Classification Using Gaussian 
Mixture Models (GMMs) without 
Resampling 

 
In this subsection, we consider GMM 

for classification without data resampling. 
We start with training one cluster or Gaussian 
distribution for each class. The accuracy is 
0.967. Table 4 below summarizes the 
performance results for this approach. 
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TABLE 4. PERFORMANCE OF GMM 

WITH 1 CLUSTER PER CLASS. 

 precision recall 
F1-

score 
support 

0 
(negative) 

1.00 0.97 0.98 717070 

1 
(positive) 

0.05 0.86 0.09 132 

Micro avg 0.97 0.97 0.97 71202 

Macro 
avg 

0.52 0.91 0.54 71202 

Weighted 
avg 

1.00 0.97 0.98 71202 

 
The performance is not ideal. In particular, 
the macro averages of precision and f1-score 
are 0.52 and 0.54, respectively. That is, false 
positives are high.  

One possibility is that one cluster per 
class is not sufficient to capture each class's 
distinctive underlying characteristics. We 
look into an appropriate number of clusters 
for each class. Note that we use the sum of 
probability densities for classification. It is 
necessary to keep the number of clusters in 
each class the same. We understand that the 
“optimal” number of clusters in each class 
may differ. We decide not to explore this for 
two reasons. It requires using a different 
criterion for classification instead of the sum 
of probability densities. It is not apparent 
what criterion serves our purpose. Also, our 
study shows that multiple clusters have 
similar performance compared with a single 
cluster. 

We use BIC (Bayesian Information 
Criterion), one of the most popular criteria 
for choosing hyperparameter (the number of 
clusters in our case), to identify the “optimal” 
number of clusters. The analysis shows that 
3-cluster and 6-cluster are two better choices. 
The performance results of GMM with 3-

cluster and 6-cluster are summarized in Table 
5 and 6 below,    
 
TABLE 5. PERFORMANCE OF GMM 

WITH 3 CLUSTERS PER CLASS. 

 precision recall 
F1-

score 
support 

0 
(negative) 

1.00 0.97 0.98 717070 

1 
(positive) 

0.04 0.85 0.09 132 

Micro avg 0.97 0.97 0.97 71202 

Macro 
avg 

0.52 0.91 0.53 71202 

Weighted 
avg 

1.00 0.97 0.98 71202 

 
TABLE 6. PERFORMANCE OF GMM 

WITH 6 CLUSTERS PER CLASS. 

 precision recall 
F1-

score 
support 

0 
(negative) 

1.00 0.99 1.00 717070 

1 
(positive) 

0.15 0.83 0.26 132 

Micro avg 0.99 0.99 0.99 71202 

Macro 
avg 

0.58 0.91 0.63 71202 

Weighted 
avg 

1.00 0.99 0.99 71202 

 
The respective accuracies of GMM with 3 
and 6 clusters are 0.966 and 0.991. Overall, 
the GMM with 6 clusters slightly 
outperforms those with 1 or 3 clusters. But it 
pays a price of relatively low recall. 

GMM for classification is essentially 
under-sampling the data because the same 
number of parameters are estimated with a 
vastly different number of data points in each 
class. Consequently, we do not consider the 



Chongqi Wu, Aishwarya Choudhary, Steve Peng, Jia Guo 
Classification of Imbalanced Data: A Comparison of Logistic Regression and Gaussian Mixture Model in Conjunction with 

Resampling 

 

 
Journal of Supply Chain and Operations Management, Volume 19, Number 1, April 2021 

 
30 

combination of GMM with the under-
sampling technique. Instead, we investigate 
the combinations of GMM with the 
oversampling approach. 

 
4.4.2. Classification Using Gaussian 
Mixture Models (GMMs) with Over-
Sampling 

 
To offer a fair comparison, we use the 

same training and test sets generated by the 
over-sampling process described in Section 
4.2. We begin with 1-cluster GMM. And then 
use BIC to select the “optimal” number of 
clusters. It turns out that 3-cluster and 6-
cluster once again are two better choices. The 
accuracies of 1-cluster, 3-cluster, and 6-
cluster GMMs are 0.931, 0.917, and 0.917. 
Tables 7-9 summarize the performance 
results of those three GMMs.  

The three GMMs render very similar 
performance results, with 1-cluster GMM 
being slightly better. The original training 
dataset has only 132 positive data points. 
After they have been duplicated many times 
in the oversampling process, having more 
clusters in positive class is more likely to 
catch some noise as signal. It potentially 
leads to overfitting, thus underperforming on 
the test set. 

 
TABLE 7. PERFORMANCE OF GMM 

WITH 1 CLUSTER PER CLASS. 

 precision recall 
F1-

score 
support 

0 
(negative) 

0.90 0.97 0.93 70996 

1 
(positive) 

0.96 0.90 0.93 71162 

accuracy NA NA 0.93 142158 

Macro 
avg 

0.93 0.93 0.93 142158 

Weighted 
avg 

0.93 0.93 0.93 142158 

 

TABLE 8. PERFORMANCE OF GMM 

WITH 3 CLUSTERS PER CLASS. 

 precision recall 
F1-

score 
support 

0 
(negative) 

0.88 0.96 0.92 70996 

1 
(positive) 

0.96 0.87 0.91 71162 

accuracy NA NA 0.92 142158 

Macro 
avg 

0.92 0.92 0.92 142158 

Weighted 
avg 

0.92 0.92 0.92 142158 

 
TABLE 9. PERFORMANCE OF GMM 

WITH 6 CLUSTERS PER CLASS. 

 precision recall 
F1-

score 
support 

0 
(negative) 

0.88 0.96 0.92 70996 

1 
(positive) 

0.96 0.87 0.91 71162 

accuracy NA NA 0.92 142158 

Macro 
avg 

0.92 0.92 0.92 142158 

Weighted 
avg 

0.92 0.92 0.92 142158 

 
GMMs with over-sampling far 

outperform GMMs without resampling. It is 
not a surprise as over-sampling, to a large 
degree, makes up for the inherent under-
sampling effect of GMM. The performance 
results are highly comparable with those of 
logistic regression with oversampling. 
GMMs for classification, however, are much 
easier to generalize to multi-class 
classification problems.  

 
V. A FRAMEWORK FOR IMBLANCED 
LEARNING AND POSITIONING OF 
THE PAPER 

 
We propose a framework of six 

aspects in helping scholars and practitioners 
determine effective approaches for handling 
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imbalanced learning problems. These aspects 
are (1) data preprocessing; (2) feature 
engineering; (3) resampling choice; (4) 
model and algorithm choice; (5) ensemble 
methods; and (6) performance metrics choice. 

In data preprocessing, the choices 
available include, but not limited to, data 
standardization and normalization, principal 
components, and independent components. 
Our paper adopts principal components and 
data standardization. In feature engineering, 
feature expansion with or without kernel 
tricks is essential, along with feature 
selection that follows. Our paper does not 
utilize feature engineering. The choice of 
resampling methods is always a critical 
decision in an imbalanced learning problem. 
We consider both oversampling and under-
sampling techniques. Depending on each 
problem's nature, scholars and practitioners 
must also decide the models and 
corresponding algorithms that will be used. 
Our paper selects logistic regression and 
GMM models. Ensemble methods are proved 
to be effective. A combination of multiple 
models tends to outperform each model. Our 
paper does not consider ensemble methods. 
The choice of different performance metrics 
can also be worthwhile in an imbalanced 
learning problem. Our paper chooses 
precision, recall, and f1-score as performance 
metrics. Our paper is uniquely positioned at 
the conjunction of principal components, 
resampling, and GMM for classification in 
handling a severe data imbalance. 

Not only does this framework help 
define a repertoire of tools for combating 
imbalanced learning problems, but it also 
guides for improving model performance. 
Exceptional performance on the selected 
metrics is not a concern of our paper. If we 
were to improve the performance, we could 
explore alternatives in each of those six 
aspects, particularly the ones we did not 

consider. First, featuring engineering is worth 
a try. Techniques like kernel methods are 
shown to be effective. Second, we only 
considered logistic regression and GMM 
models. There are plenty of other 
classification and clustering models to 
consider. Additionally, an ensemble of some 
of these models will likely outperform our 
current choices. Last but not least, false 
negative is more severe a problem in credit 
card fraud detection.  Thus, it helps to 
consider some cost-sensitive methods to 
penalize misclassification of actual fraud 
more severely. 

 
VI. CONCLUSIONS 

 
This paper uses a highly imbalanced 

credit card fraud dataset and investigates the 
effectiveness of combining classification and 
clustering algorithms with resampling 
techniques on handling imbalanced learning. 
One algorithm is logistic regression, a classic 
classification method. The other, GMM, is a 
sophisticated clustering method applied to 
classification. Our study indicates that 
exploring combinations of different 
algorithms and techniques is a reasonable and 
probably necessary approach to combat 
severe data imbalance in classification 
problems. When combined with the 
oversampling method, both logistic regress 
and GMM render rather satisfying 
performance results. Oversampling tends to 
outperform under-sampling. 

We also propose a framework of six 
aspects for selecting an effective approach to 
handle imbalanced learning problems and for 
improving model performance. To improve 
performance on credit card fraud detection, 
additional considerations include, but not 
limited to, feature engineering, various 
classification and clustering models, 
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ensemble methods, and heavier penalty on 
false negative.  

Deep learning techniques are, in some 
sense, overtaking the field of machine 
learning. It, however, usually demands a vast 
dataset. With the capabilities of deep neural 
networks increasing day by day, it would be 
fascinating to investigate the effectiveness of 
deep learning in dealing with imbalanced 
learning. We look forward to it.    
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