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Online retailers have usually three options for fulfilling the customers’ demands. They may fulfill 
an order by either the local fulfillment center (closest to the demand point), neighbor centers (any 
center other than the local), or directly from the suppliers or manufacturers (aka drop-shipping). 
Given a finite set of products with varying prices and costs, we consider the problem of 
determining the optimal fulfillment plan for an online retailer who sells a finite set of products to 
customers from different regions in a single period. The retailer fulfills orders using multiple 
fulfillment centers and/or by diverting the orders to the suppliers with the objective of maximizing 
the profit. Two Mixed Integer Linear Programing models are proposed for deterministic and 
stochastic demands. We applied the models to a numerical example and conducted sensitivity 
analyses to test the robustness of the models. 
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I. INTRODUCTION  
 

Due to the rapidly increasing 
population of Internet users, online retailing 
has become very common and there are many 
retailers today selling their products only 
through online channels (e.g., Amazon, 
eBags, Blulight.com, Netgrocer.com, 
onlinefoodgrocery.com, etc.). According to 
U.S. Census Bureau (2019), in the year of 
2018, e-commerce sales in the United States 
accounted for 9.63% of the total retail sales 
compared to 8.90% in 2017. The overall 
retail sales had a growth rate of 4.74% in 

2018, while the sales of e-commerce retail 
grew at a significant rate of 13.38% 
accounting for 25% of the total growth of the 
sector. As a purely online retailer, Amazon’s 
sales of 2018 accounted for 5% of all retail 
sales and 49.1% of all online retail sales 
throughout the country. Despite this 
impressive growth, online retailing is a very 
challenging business to run, for instance, 
Amazon’s operating margin was below 4% in 
the entire period of 2011-2018 (Macrotrends. 
2019), which is a significantly small margin 
compared to an average of 6% to 10% for 
brick-and-mortar stores (Rigby, 2014).  
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An online retailer functions very 
differently from a traditional retailer. One of 
the main differences is in the shopping 
experience and the delivery time. A 
consumer who orders online typically waits 
for the delivery of the goods, whereas in 
brick-and-mortar stores, they can 
immediately receive their purchased items.  
This difference makes the delivery more 
costly for the online retailer. Expediting the 
delivery through any mechanism results in 
higher delivery and/or inventory costs, which 
makes it necessary for the retailer to 
streamline its inventory and fulfillment plans.  

Furthermore, there are many 
additional costly, logistics-related activities 
involved in online retailing compared to in-
store shopping such as packaging, outbound 
shipping, return handling, among which  
outbound shipping is often quoted as the 
main source of fulfillment cost (Dinlersoz 
and Li 2006). These extra activities 
significantly increase the fulfillment costs of 
the online retailers, as they are not likely to 
be completely covered by the customers 
(Howland 2016). However, due to the high 
competition and consumers’ increasing 
expectations, many retailers have no choice 
but to allow flexible and less expensive 
shipping options. These include 
unconditional free shipping (e.g., Nordstrom 
and Zappos), conditional free shipping (e.g., 
Amazon.com, Jet.com, Walmart), or free in-
store pickup (e.g., Macy's and Walmart). The 
no-cost or fixed-cost shipping options imply 
that the retailer should incur the remainder of 
the shipping cost. Therefore, online retailers 
are highly incentivized to find the fastest and 
cheapest fulfillment plans for any order 
received.  

Retailers’ fulfillment decisions are 
tightly connected to the storage and 
distribution of their inventories and can have 
a significant impact on their overall operating 
costs. Online retailers often have multiple 
fulfillment centers (FCs). Amazon, for 

example, has currently 175 warehouses 
throughout the country (Amazon, 2019), and 
for fulfilling an order, they ship the product 
from the closest warehouse to the demand 
point (local fulfillment center), or in case of a 
stock-out, the inventory in a neighbor 
fulfillment center can be used to meet the 
demand. In addition to these two options, 
many online retailers (e.g., Dell) send the 
orders received from their customers to the 
manufacturers/suppliers so that the products 
are shipped directly from the 
manufacturer/supplier to the customer. This 
fulfillment option is also known as drop-
shipping, and requires a high level of 
coordination among players of the supply 
chain (Newsgram, 1963).  Indeed, the success 
of retailers such as Amazon in selling their 
products through online channels is mainly 
attributed to their efficient and low-cost 
supply chain (Nitin Chaturvedi and Ulker, 
2013). 

In this paper, we model and solve a 
fulfillment planning problem for an online 
retailer in a single period. The retailer offers 
a set of n products with given prices and unit 
costs. The objective of the retailer is to 
maximize the total profit that is the total sales 
revenue minus the total cost, which includes 
the unit cost of items plus the fulfillment and 
holding costs.  We first consider a 
deterministic case where all products have 
fixed, but different demands. Then, the fixed 
demand assumption is relaxed by considering 
stochastic demands from known normal 
distributions. The means and standard 
deviations of demand vary for products.  The 
retailer makes decisions about the type and 
quantity of products that are stored in each 
FC as well as the fulfillment assignment 
using one or a combination of the three 
options: local FC, neighbor FCs, or suppliers. 
We propose tractable Mixed Integer Linear 
Programming (MILP) models for the 
fulfillment optimization problem under 
deterministic and stochastic demand 
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assumptions. The tractability of our models 
makes it possible for the retailers to solve this 
problem in large scales within reasonable 
time spans. 

The remainder of this paper is 
organized as follows. Section 2 reviews the 
literature. Section 3 presents the notations 
and formulation of the fulfillment 
optimization problem under deterministic 
and stochastic demand assumptions for the 
online retailer. Section 4 presents a set of 
numerical analyses along with sensitivity 
analyses of the results. Section 5 concludes 
the research. 
 
II. RELATED LITERATURE 
 

The problem studied in this paper is 
closely related to two streams of literature:  e-
fulfillment and dynamic assortment planning. 
The literature in e-fulfillment can be divided 
up to three areas of distribution network 
design, inventory and capacity management, 
and delivery planning and execution.  We 
specifically review the distribution network 
design and inventory and capacity 
management literature as they are more 
related to this research.   

In the area of distribution network 
design when online channels are added, the 
designing of the e-fulfillment center and the 
level of automation at these centers are of 
strategic importance.  Furthermore, whether 
these channels are operated as separate 
entities, or integrated and shared entities in 
fulfilling in-store or online demands are 
reviewed extensively in the literature.  
Bendloy et al. (2007) argue that inventory 
pooling increases the service level and/or 
decreases operating costs and suggest that 
only if as a percentage of the online demand 
(base level) is met it makes sense to introduce 
a dedicated warehouse.  Liu et al. (2010) 
discuss the trade-offs between the risk of 
inventory pooling and the transportation 
costs.  They showed that both demand 

variability and transport costs are important 
parameters in warehouse selection.  Hubner 
et al. (2015) empirically investigate how and 
why retailers with multiple channels develop 
their logistics activities into Omni-channel 
systems in the retail industry. They conclude 
that Omni-channel retailers need to create 
new logistics models that reviews the trade-
off between the process of integration and 
separation between different channels. 
Bretthauer et al. (2010) discuss where and 
how much inventory should be allocated and 
held at each site for a retailer that satisfies 
both in-store and online demand. Specifically, 
they recommend how many and which of a 
firm’s capacitated locations should handle 
online sales to minimize total cost (holding, 
backorder, fixed operating, transportation, 
and handling costs).  

Distribution network design 
modelling concentrates on how online orders 
are assigned within the supply chains and 
mainly propose a dynamic allocation policy 
that uses real time information to reevaluate 
e-fulfillment decisions in view of reducing 
costs. 

In the stream of dynamic assortment 
planning, Lei Jasin and Sinha (2019) discuss 
the use of dynamic pricing and order 
fulfillment and develop two heuristic 
methods to find an optimal pricing policy.  
They first solve a deterministic 
approximation of the pricing policy and use 
the derived solution to solve a second 
heuristic that is adjusted by the realized 
demand. Rodriguez and Aydin (2015) 
develop a model that optimizes pricing and 
assortment decisions in a dual channel where 
the retailer carries a subset of the products 
that the manufacturer carries.  Their pricing 
strategies is influenced by inventory related 
costs. Randall, Netessine and Rudi (2005) 
use data from 50 publicly traded Internet 
retailers to understand the role of inventory 
ownership and fulfillment capabilities. They 
propose the role of factors such as product 
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variety, demand uncertainly, and the firm’s 
age on the decision of de-coupling storefronts 
from inventory. Their model rely on drop-
shipping to fulfill customer orders. They 
prove that the firm’s survival is directly 
related to aligning its supply chain structure 
to its inventory ownership decisions.  

Van Ryzin and Mahajan in their 1999 
paper used a newsvendor framework where 
the demand process is based on the 
multinomial logit model of consumer choice. 
They developed a structure for the optimal 
assortment planning and provided insights on 
how the demand and price factors affect the 
optimal level of assortment variety.  Smith 
and Agrawal (2000) model the consumer 
choice mechanism as a static probabilistic 
choice process and study the optimal 
assortment and stocking decisions under 
different substitution mechanisms. Mahajan 
and Van Ryzin (2001a, b) and Smith and 
Agrawal (2003) study the effect of dynamic 
substitution on assortment planning, 
inventory competition, assortment and 
inventory optimization for complementary 
products and category management with 
basket-shopping customers.   

This paper contributes to the retail 
operations literature in multiple ways. First, 
while most of the papers in the literature of 
retail fulfillment focus on brick-and-mortar 
centers, this paper concentrates on pure 
online retailers. Second, many papers in the 
literature deal with solely one of the 
inventory, assortment, or fulfilment planning 
problems. This paper, however, focuses on 
fulfillment planning models with the 
capability to address the inventory 
management problem simultaneously.  
Finally, this paper enriches the literature by 
providing a more detailed framework that 
includes many realistic situations such as 
multiple fulfillment options, stock-out and 

substitution effects, limited storage capacity, 
and stochastic market demand.  

 

III. PROBLEM DESCRIPTION AND 
ASSUMPTIONS 

 
We seek the optimal fulfillment plan 

for a profit-maximizing online retailer that 
has demand for a set of finite products from 
different locations. Demand at each point can 
be fulfilled by a combination of three 
alternatives: fulfillment by the local FC 
(closest to the demand point potentially with 
less fulfillment costs), neighbor FCs (any 
center other than the local), or directly drop-
shipped from the suppliers. The following 
graph illustrates the network of possible 
fulfillment scenarios for a simple case of only 
two fulfillment centers (FC-1 and FC-2) each 
covering a corresponding local demand 
region. For simplicity, we assumed that there 
is only one supplier for the products (S). 

Total costs in the profit function 
includes purchasing costs, carrying costs of 
products at FCs, and shipping costs from the 
origins (FCs or suppliers) to the customers. 
Throughput this paper, we assume that the 
unit purchasing cost of a product would be 
cheaper if the retailer ordered it beforehand 
and stored it in his warehouse rather than 
fulfilling by direct shipments from the 
suppliers. i.e., ݓ௜

஽ ൑ ௜ݓ
ௌ  where ݓ௜

஽  denote 
the wholesale unit cost of product ݅	if ordered 
and stored in FCs, while ݓ௜

ௌ  would be unit 
cost if directly shipped from suppliers. This 
is consistent with the current practice and 
also with the Newsvendor problem with the 
reorder in which buying prices increase after 
the retailer observes the demand (Cachon and 
Netessine, 2006).   
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FIGURE 1. FULFILLMENT OPTIONS FOR A RETAILER WITH TWO FCS 
 
We consider products to be 

substitutable, in the sense that if the demand 
for a product is not met by the retailer, a 
portion of its demand can be absorbed by 
other products that are provided. In our 
models, there might be two possible causes 
for substitution: 1) when a product is not 
offered by the retailer, neither carried out in 
FC nor drop-shipped from the supplier, 2) 
when the demand exceeds the total supply, 
the extra unmet demand will be substituted 
with other substitute products (if any). The 
second usually happens when demand is 
stochastic.  

If a product is not profitable, retailer 
can choose not to offer it. Assuming products 
݅  and ݈	 are substitutable, ߠ௟௜  denotes the 
percentage of demand for product ݈  that in 
case of shortage will be substituted with 
product ݅. The total proportion of demand for 
product ݈	that is substituted by other products 
would be Σ௜ߠ௟௜, where Σ௜ߠ௟௜ ൑ 1. 

We also assume an assortment costs 
for products carried at FCs. This will make 
sure that the retailer does not carry 
infinitesimal amounts of a product in the 
storage and only store products that have 
reasonable demand. We let ߛ௜௞  denote the 

assortment cost that the retailer incurs if 
product ݅ is stored at FC k. 

Online retailer’s main decisions are 
type and quantity of products stored in 
different FCs and the fulfillment plan. In 
addition to these, amount of sales, shortage, 
and surplus are other decision variables in the 
model. Following is the list of parameters and 
decision variables that are used in the 
formulation of the problem. 
  
Parameters: 
i= index of products (i= 1, 2 … I); I: total 

number of products 
l = index of products with shortage that may 

substitute (l= 1, 2 … I); I: total 
number of products 

j= index of demand locations (j= 1, 2 …J); 
J: total number of FCs 

k= index of fulfillment locations (k=1, 
2…J); J: total number of FCs 

Pi = retail price of product i 
௜ݓ
஽

 = wholesale unit cost of product i if 
ordered and stored at FCs  

௜ݓ
ௌ

= wholesale unit cost of product i if 
supplied by suppliers  
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Cijk = shipping cost per unit of product i 
from FC k to the region covered by 
FC j  

Fij= shipping cost per unit of product i 
shipped directly from supplier to the 
region covered by FC j 

  ik: assortment cost of product i at FC kߛ
hi: cost of excess capacity for unit of product 

i [holding cost of unused products] 
dij= potential demand for product i in 

demand location j (STOCHASTIC)  
 ݈ ௟௜ = percentage of demand for productߠ

that substitute to product i in case of 
shortage  

ti = shelf space needed per unit for product i 
 (ଷݐ݂)

βk= space capacity of FC k (݂ݐଷ) 
 
Decision variables: 
Zijk = amount of product i fulfilled from FC 

k for location j 

Yij = amount of product i fulfilled from 
suppliers for location j 

Xik = amount of product i stored at FC k 
Γ௜௞ = binary variable indicating if product 

݅	is stored in FC k 
௜ܵ௝ ൌ Sale of product i at location j 
௜௝ܪ ൌ Slack (Unsatisfied demand for 

product i at location j)  
௜ܱ௝ = Overage (excess supply for product i 

at location j) 
 
3.1 Deterministic Model 

 
We first focus on a static fulfillment 

model in which the demand is assumed 
deterministic and certain. The results in this 
section are relevant to situations where 
demand is highly predictable, which can be 
the case for foods and necessary consumable 
items such as shampoos, toothpastes, napkins, 
etc. 

 
(P1) = Max {∑ ∑ ௜ܲ ௜ܵ௝

௃
௝

ூ
௜ୀଵ െ ∑ ∑ ௜ݓ

஽	 ௜ܺ௝
௃
௝

ூ
௜ୀଵ െ	∑ ∑ ௜ݓ

ௌ	 ௜ܻ௝
௃
௝

ூ
௜ୀଵ െ		∑ ∑ ௜௝ܨ ௜ܻ௝

௃
௝

ூ
௜ୀଵ െ

		∑ ∑ ∑ ௜௝௞ܼ௜௝௞ܥ
௃
௝ୀଵ

ூ
௜ୀଵ

௃
௞ୀଵ െ ∑ ∑ ݄௜ ௜ܱ௝

ூ
௜ୀଵ

௃
௝ୀଵ െ ∑ ∑ ௜௞Γ௜௞ߛ

ூ
௜ୀଵ

௃
௞ୀଵ 	}  

 
Subject to: 

∑ ܼ௜௝௞
௃
௞ୀଵ ൅	 ௜ܻ௝	– ሺ݀௜௝ ൅ ∑ ௟௜ߠ	௟௝ܪ

ூ
௟ୀଵ
௟ஷ௜

ሻ ൌ ௜ܱ௝ െ  ௜௝  (1)ܪ

∑ ܼ௜௝௞
௃
௞ୀଵ ൅	 ௜ܻ௝ െ ௜ܱ௝ ൌ ௜ܵ௝       (2) 

 ௜ܺ௞ ൑  Γ௜௞    (3)		௞ߚ
∑ ܼ௜௝௞
௃
௝ୀଵ ൑ ௜ܺ௞        (4)   

∑ ௜ܺ௞		ݐ௜
ூ
௜ୀଵ ൑  ௞  (5)ߚ	

Hij, Sij ,Xij, Zijk , Yij ≥ 0 
 
The objective is to maximize the total 

profit function that is defined as the total 
revenue from products minus total 
purchasing costs of products, total 
transportation costs, holding costs of unsold 
products, and assortment costs. Constraint (1) 
measures excess or shortage of each product 
at each demand location by subtracting total 
demand from total supply. Constraint (2) 
measures the total sale of each product at 

each demand location by subtracting the 
excess supply from the total amount of 
supply. Constraint (3) is defined to ensure 
that product ݅ is considered “carried” in FC k 
(i.e., Γ௜௞ ൌ 1) only if some positive amount 
of that product is stored at FC k (i.e., ௜ܺ௞ ൐
0 ). Constraint (4) ensures that the total 
amount of product i shipped from FC k does 
not exceed the stored amount of that product 
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in FC k.  Constraint (5) applies the storage 
capacity limitation.  

 
3.2 Stochastic Model 

 
In this section, we allow the products’ 

demand to be stochastic. Having uncertain 
parameters in the right-hand-side vector of 
the formulation can affect the whole model as 
now the constraints will directly engage with 
probabilistic parameters while the objective 
function will indirectly be affected by 
corresponding changes on the value of 
decision variables. For the case of stochastic 
demand, we use Chance Constrained 
Programming as an appropriate method for 
linear programing problems with uncertain 
parameters.   

Chance Constrained Programming 
(CCP) as the second type of stochastic 
programming, developed by Charnes and 
Cooper (1959), attempts to reconcile 
optimization over uncertain constraints. The 
constraints, which contain random variables, 
are guaranteed to be satisfied with a certain 
probability. In CCP, it is required that the 
objectives should be achieved with the 
stochastic constraints held at least α percent 
of time, where α is provided as an appropriate 
safety margin by the decision maker (aka 
service level). 

Assume that x is a decision vector, ξ 
is a stochastic vector and gj(x, ξ) are 
stochastic constraint functions, j= 1, 2… p. 
Since the stochastic constraints gj(x, ξ) ≤ 0, 
j= 1, 2… p do not define a deterministic 
feasible set, they need to be hold with a 
confidence level α. Thus chance constraint is 
represented as follows (Liu, 2009): 

 

Pr {gj(x, ξ) ≤ 0, j= 1, 2, …, p} ≥ α          
(6) 

                                                       
1 Refer to Liu (2009) for the proof. 

Which is called a joint chance constraint, 
and when we want to consider them 
separately it is shown as follows:  

Pr {gj(x, ξ) ≤ 0} ≥ αj ,    j= 1, 2, …, p                        
(7) 

In general, for a linear-form function 
݃ሺݔ, ሻߦ ൌ 	ܽଵݔଵ ൅	ܽଶݔଶ ൅ ⋯൅ ܽ௡ݔ௡ െ ܾ, if 
the coefficients ζ = ሺܽଵ, ܽଶ, … , ܽ௡, ܾሻ  are 
assumed to be independently-distributed 
normal random variables, then Pr { g(x, ξ) ≤ 
0} ≥ α  if and only if  

][][][)(][
1

21

1

bEbVxaVarxaE
n

i
ii

n

i
ii  







      

             (8) 

where Ф is the standard normal distribution 
function 1 . For this problem, we assume 
demand ( ݀పఫ෪ ) is stochastic and normally 

distributed with the mean of ܧሾ݀పఫ෪ ] and 

variance of ܸܽݎ൫݀పఫ෪൯ . Therefore, we can 
rewrite the first constraint as: 

∑ ܼ௜௝௞
௃
௞ୀଵ ൅	 ௜ܻ௝	– ∑ ௟ఫ෪ܪ ௟௜ߠ	

ூ
௟ୀଵ
௟ஷ௜

൅ ߶ିଵሺ1 െ

൫݀పఫ෪൯ݎሻටܸܽߙ ൒  ሾ݀పఫ෪ሿ          (9)ܧ

where ܪ௟ఫ෪ is the shortage of product 
݈	at demand location ݆, which itself is random 
depending on the realization of demand ݀௟ఫ෪ . 
Setting the same ߙ at the product level will 
make the retailer incur enormous amount of 
carrying and fulfillment costs.  To fix this, we 
allow the retailer to set different values of ߙ 
for different products. Therefore, if the 
retailer finds a product uncritical or unworthy 
of the carrying cost, he may set a low ߙ for 
that product. On the other hand, for the high-
demand and critical products, he may set a 
high value of ߙ. This gives the retailer the 
flexibility to adjust its risk of shortage 
according to the profitability of a product. 
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This formulation of the stochastic model also 
allows taking the same service level ߙ for a 
whole category of products if necessary.  

It is important to note that with the 
assumption of random demand, the three 
variables of sales, excess supply, and 
shortage ( పܵఫ෪ , పܱఫ෪ పఫ෪ܪ , ) become random 
variables, which depend on the realization of 
product demands. Our approach in this model 
would be to approximate these three random 

variables with their realized values when 
demand is equal to the average demand, i.e.,  
ሾ݀పఫ෪ሿܧ	 . As a result, we use ௜ܵ௝

ఓ ൌ

	 పܵఫ෪	൫	݀ൣܧపఫ෪൧൯	  , ௜ܱ௝
ఓ ൌ 		 పܱఫ෪ 	൫	݀ൣܧపఫ෪൧൯ ௜௝ܪ ,

ఓ ൌ

పఫ෪ܪ		 	൫	݀ൣܧపఫ෪൧൯  as approximate values for 
those random variables and by doing so, we 
will end up with a deterministic-approximate 
model for when demand is assumed 
stochastic. 
 

(P2) = Max {∑ ∑ ௜ܲ ௜ܵ௝
ఓ௃

௝
ூ
௜ୀଵ െ ∑ ∑ ௜ݓ

஽	 ௜ܺ௝
௃
௝

ூ
௜ୀଵ െ	∑ ∑ ௜ݓ

ௌ	 ௜ܻ௝
௃
௝

ூ
௜ୀଵ െ		∑ ∑ ௜௝ܨ ௜ܻ௝

௃
௝

ூ
௜ୀଵ െ

		∑ ∑ ∑ ௜௝௞ܼ௜௝௞ܥ
௃
௝ୀଵ

ூ
௜ୀଵ

௃
௞ୀଵ 	െ ∑ ∑ ݄௜ ௜ܱ௝

ఓூ
௜ୀଵ

௃
௝ୀଵ െ ∑ ∑ ௜௞Γ௜௞ߛ

ூ
௜ୀଵ

௃
௞ୀଵ }  

Subject to: 

∑ ܼ௜௝௞
௃
௞ୀଵ ൅	 ௜ܻ௝	– ∑ ௟௝ܪ

ఓ ௟௜ߠ	
ூ
௟ୀଵ
௟ஷ௜

൅ ߶ିଵሺ1 െ ሺ݀పఫ෪ሻݎ௜ሻටܸܽߙ ൒  ሾ݀పఫ෪ሿ     (10)ܧ	

∑ ܼ௜௝௞
௃
௞ୀଵ ൅	 ௜ܻ௝	– ሺߤ	௜௝

ௗ ൅ ∑ ௟௝ܪ
ఓ ௟௜ߠ	

ூ
௟ୀଵ
௟ஷ௜

ሻ ൌ ௜ܱ௝
ఓ െ ௜௝ܪ

ఓ  (11) 

∑ ܼ௜௝௞
௃
௞ୀଵ ൅	 ௜ܻ௝ െ ௜ܱ௝

ఓ ൌ ௜ܵ௝
ఓ   (12) 

௜ܺ௞ ൑  Γ௜௞  (13)		௞ߚ
∑ ܼ௜௝௞
௃
௝ୀଵ ൑ ௜ܺ௞       (14) 

∑ ௜ܺ௞		ݐ௜
ூ
௜ୀଵ ൑  ௞ (15)ߚ	

Hij, Sij ,Xij, Zijk , Yij ≥ 0 
 
The objective is to maximize an 

approximated value for the total expected 
profit function that is defined as the total sales 
revenue at average demand minus total 
purchasing costs of products, transportation 
costs, holding costs of unsold products 
assuming average demand, and assortment 
costs. Constraint (10) defines the chanced 
constraint applying the required service level. 
Constraint (11) measures the excess or 
shortage of each product for when the 
demand is at the average level as a proxy for 
the expected excess and shortage. Constraint 
(12) measures the total sales revenue of each 
product if demand is equal to the mean values 
as a proxy for the total expected revenue. 
Constraint (13) is defined to ensure that the 
binary variable Γ௜௞  takes one only when 
product ݅  is stored at FC k (i.e., ௜ܺ௞ ൐ 0 ). 
Constraint (14) ensures that the total amount 

of product i shipped from FC k does not 
exceed the stored amount of that product in 
FC k.  Constraint (15) does not allow extra 
storage above the normal capacity of each FC.  
 
IV. NUMERICAL ANALYSIS 
 
4.1 Sample category of products  

 
To check the effectiveness and 

robustness of our models, we performed 
multiple numerical analyses. For illustration, 
we included a hypothetical small-scale 
fulfillment problem, but the results are 
general enough to be extended to larger 
problems. We consider an online retailer with 
three FCs (J=3) that offers a category of ten 
products (I=10). Table 1 summarizes for each 
product the price, unit costs, shipping costs 
per unit, unit volume, and holding costs per 
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unit. Table 2 presents the demand (mean and 
variance) and the substitution rates of each 

product.  Storage capacities in FCs 1 to 3 are 
respectively 805, 713, and 854. 

 
TABLE 1. HYPOTHETICAL NUMERICAL EXAMPLE (PRICE, UNIT COSTS, 

SHIPMENT COSTS, UNIT VOLUME AND HOLDING COST) 

݅	 ௜ܲ	 ஽ܹ	 ௌܹ	
ܿ௜௝ଵ	 ܿ௜௝ଶ ܿ௜௝ଷ ௜௝ܨ

௜ݐ ݄௜j=1 j=2 j=3 j=1 j=2 j=3 j=1 j=2 j=3 j=1 j=2 j=3 

1 15 1 1.6 0.2 1.2 0.8 1.6 1 2.1 0.7 1.1 0.3 0.5 1.2 0.9 1.6 2.2 

2 12 1 2.9 1.3 1.6 1.4 2 0.5 0.8 1.4 2.4 0.7 1.4 0.8 1 2.8 2.3 

3 15 1.7 3 1.2 2 1.3 0.9 0.6 0.7 1.1 0.8 0.5 1.4 0.9 0.8 1.3 0.4 

4 10 2.1 2.2 1.4 2.5 2.4 3.2 1.2 1.4 2.9 3.2 1.3 3.4 2.5 2.6 3.8 3.2 

5 13 0.8 0.9 1.1 2.2 2.2 1.8 0.4 0.6 1.5 1.9 1.1 2.3 1.2 2 1.7 2.1 

6 16 2 3 0.1 0.2 0.6 0.9 0.8 1.3 0.9 1.1 0.85 0.6 0.7 0.9 1.8 1.5 

7 16 1 1.8 3.6 4.1 3.7 1.7 0.55 0.65 1.4 2.2 1.2 3.5 3.4 2.7 3.9 2.4 

8 20 4 6 3.2 3.3 3.5 3.1 1.9 2.8 2.9 3.1 2 3.4 2.6 3 2.5 2.9 

9 12 1.2 1.6 0.1 0.2 0.8 1.3 0.75 0.85 1.7 1.6 1.2 1.2 0.8 1.4 0.9 1.1 

10 19 7 8 0.4 1 0.8 1.7 1.6 3 1.1 0.4 0.3 0.6 1.1 1.3 0.2 0.9 

 

TABLE 2. HYPOTHETICAL NUMERICAL EXAMPLE (DEMAND AND 
SUBSTITUTION PARAMETERS) 

 

4.2 Result: Deterministic Model  
 
We first run the deterministic version 

of the model for the hypothetical example. 
The demand for each product is assumed to 
be equal to the mean demand provided at 
Table 2. The proposed Mixed Integer 

Programming model (P1) is solved using the 
MATLAB R2019a. For our hypothetical 
example, the maximum profit level is 
$33,061 under the deterministic model. The 
details of the optimal decision variables are 
reported in Tables 3 and 4.  

 

݅	
	൫݀௜௝൯ܧ 	൫݀௜௝൯ݎܸܽ ௟௜ߠ

j=1 j=2 j=3 j=1 j=2 j=3 l=1 l=2 l=3 l=4 l=5 l=6 l=7 l=8 l=9 l=10 

1 105 111 52 856 404 70 0 40% 0 0 0 0 0 0 0 0 

2 141 101 63 1699 439 500 40% 0 0 0 0 0 0 0 0 0 

3 53 67 147 11 26 2542 0 0 0 30% 30% 0 0 0 0 0 

4 131 100 114 2315 1480 2020 0 0 30% 0 30% 0 0 0 0 0 

5 139 109 97 1059 1925 634 0 0 30% 30% 0 0 0 0 0 0 

6 138 103 140 2583 1925 2915 0 0 0 0 0 0 10% 50% 0 0 

7 130 68 145 381 52 2319 0 0 0 0 0 0 0 40% 0 0 

8 102 65 90 1496 238 267 0 0 0 0 0 0 0 0 0 0 

9 136 72 71 175 816 65 0 0 0 0 0 0 0 0 0 0 

10 93 109 111 476 1728 205 0 0 0 0 0 0 0 0 0 0 
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TABLE 3. OPTIMAL INVENTORY AND FULFILLMENT FOR DETERMINISTIC 
MODEL 

݅ ௜ܺ௝	 ௜ܻ௝	 ܼ௜௝ଵ ܼ௜௝ଶ	 ܼ௜௝ଷ
j=1 j=2 j=3 j=1 j=2 j=3 j=1 j=2 j=3 j=1 j=2 j=3 j=1 j=2 j=3 

1 0 0 0 105 111 52 0 0 0 0 0 0 0 0 0 

2 0 0 0 141 101 63 0 0 0 0 0 0 0 0 0 

3 0 0 371 0 0 0 0 0 0 0 0 0 92 97 181 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 178 139 131 0 0 0 0 0 0 0 0 0 

6 273 0 0 0 0 108 138 103 32 0 0 0 0 0 0 

7 0 183 0 130 0 30 0 0 0 0 68 115 0 0 0 

8 0 0 149 43 65 0 0 0 0 0 0 0 59 0 90 

9 279 0 0 0 0 0 136 72 71 0 0 0 0 0 0 

10 313 0 0 0 0 0 93 109 111 0 0 0 0 0 0 

 

TABLE 4. OPTIMAL SALE, SHORTAGE, EXCESS, AND STORAGE DECISIONS FOR 
DETERMINISTIC MODEL 

݅ ௜ܵ௝	 ௜௝ܪ ௜ܱ௝ Γ௜௞ 

j=1 j=2 j=3 j=1 j=2 j=3 j=1 j=2 j=3 k=1 k=2 k=3 

1 105 111 52 0 0 0 0 0 0 0 0 0 
2 141 101 63 0 0 0 0 0 0 0 0 0 
3 92 97 181 0 0 0 0 0 0 0 0 1 
4 0 0 0 131 100 114 0 0 0 0 0 0 
5 178 139 131 0 0 0 0 0 0 0 0 0 
6 138 103 140 0 0 0 0 0 0 1 0 0 
7 130 68 145 0 0 0 0 0 0 0 1 0 
8 102 65 90 0 0 0 0 0 0 0 0 1 
9 136 72 71 0 0 0 0 0 0 1 0 0 

10 93 109 111 0 0 0 0 0 0 1 0 0 

 

There are three noteworthy points in Tables 
3 and 4:  

1) For all products, the retailer stores them 
at most in one location and chooses to 
cross-ship from neighbor FCs. 
Obviously, as the size of the problem 
increases, the retailer will probably store 
each product in a greater number of FCs, 
but taking advantage of neighbor FCs is 
a viable option especially when the 
assortment cost is significant. In such 
cases, the retailer prefers to pay the extra 

shipping cost of Neighbor FCs to avoid 
the assortment and carrying costs in 
multiple FCs.     

2) The retailer has chosen not to offer 
product 4 to the market (permanent 
stockout), neither through its FCs nor 
directly through suppliers. This is 
because by not offering it, only 40% of 
its demand will be lost as the remaining 
60% will be substituted by products 3 
and 5 (see ߠ௟௜ in Table 2). Moreover, 
since the profit contribution of its 
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substitutes are significantly higher, the 
retailer will have enough incentive to 
eliminate it from the list of offered 
products.  

3) The retailer has chosen not to carry 
products 1, 2, and 5 in its FCs, but it 
offers them through drop-shipping. This 
case happens when the supplier of a 
product does not charge significantly 
higher than the normal price for drop-
shipping. In those cases, the retailer 

would avoid the high assortment cost by 
not carrying it locally at its FCs. Indeed, 
considering the profit margin of the 
product and affordable cost of shipment 
from suppliers, drop-shipping becomes 
the optimal alternative. This is especially 
true for products that have high demands 
but are not highly substitutable.    

 

 

 

TABLE 5. OPTIMAL INVENTORY AND FULFILLMENT FOR STOCHASTIC MODEL 

݅ ௜ܺ௝ ௜ܻ௝ ܼ௜௝ଵ ܼ௜௝ଶ ܼ௜௝ଷ 

j=1 j=2 j=3 j=1 j=2 j=3 j=1 j=2 j=3 j=1 j=2 j=3 j=1 j=2 j=3 

1 0 0 0 142 137 63 0 0 0 0 0 0 0 0 0 

2 0 0 0 194 128 92 0 0 0 0 0 0 0 0 0 

3 0 245 0 0 0 98 0 0 0 70 76 99 0 0 0 

4 0 0 0 193 149 172 0 0 0 0 0 0 0 0 0 

5 0 0 0 181 165 129 0 0 0 0 0 0 0 0 0 

6 572 0 0 0 0 0 203 159 209 0 0 0 0 0 0 

7 0 0 439 0 0 0 0 0 0 0 0 0 155 77 207 

8 0 347 0 0 0 0 0 0 0 152 85 111 0 0 0 

9 343 0 0 0 0 0 153 109 81 0 0 0 0 0 0 

10 121 0 0 0 162 129 121 0 0 0 0 0 0 0 0 

 

TABLE 6. OPTIMAL SALE, SHORTAGE, EXCESS, AND STORAGE DECISIONS FOR 
STOCHASTIC MODEL 

݅	 ௜ܵ௝ ܪ௜௝ ௜ܱ௝ Γ௜௞ 

j=1 j=2 j=3 j=1 j=2 j=3 j=1 j=2 j=3 k=1 k=2 k=3 

1 105 111 52 0 0 0 37 26 11 0 0 0 

2 141 101 63 0 0 0 53 27 29 0 0 0 

3 53 67 147 0 0 0 4 7 65 0 1 0 

4 131 100 114 0 0 0 62 49 58 0 0 0 

5 139 109 97 0 0 0 42 56 32 0 0 0 

6 138 103 140 0 0 0 65 56 69 1 0 0 

7 130 68 145 0 0 0 25 9 62 0 0 1 

8 102 65 90 0 0 0 50 20 21 0 1 0 

9 136 72 71 0 0 0 17 37 10 1 0 0 

10 93 109 111 0 0 0 28 53 18 1 0 0 
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4.3 Result: Stochastic Model 
 
In this subsection, we consider 

stochastic demands for products. We assume 
product demands follow normal distribution 
with the means and variances provided in 
Table 2. To address the uncertainty 
embedded in our model, we use the Chance 
Constrained Programming method described 
in Subsection 3.2. The model (P2) is solved 
for the same hypothetical example described 
in Subsection 4.1 using the MILP solver of 
MATLAB R2019a. We consider the same 
service level coefficient of ߙ௜ 	ൌ 0.9 for all 
products, ∀݅ ∈ ሼ1,… ,10ሽ . The maximum 
profit level would be $23,608 under the 
stochastic model with a 90% service level for 
all the products. The optimal values of 
decision variables are provided in Tables 5 
and 6. 

There are three important points in 
Tables 5 and 6:  

1) Similar to the deterministic model, the 
retailer stores all the items at most in one 
location and benefits from cross 
shipments from neighbor FCs, which 
reinforces the observation that the 
retailer makes the tradeoff between the 
extra shipping cost of Neighbor FCs and 
the assortment and carrying costs in 
multiple FCs.     

2) Previously, in deterministic model, the 
retailer opted for a permanent stockout 
of product 4 by not offering it to the 
market whereas in this stochastic 
solution, the retailer supplies all products 
including product 4 through either FCs 
or supplier.  Note that this is only 
because the solution in Table 5 and 6 is 
solved for service levels at the individual 
product levels (i.e., ߙ௜). Permanent 
stockout of products should become 
possible in stochastic models if a 
composite service level ߙ is defined at 
the category or store level.  

3) The retailer has chosen not to carry in its 
FCs products 1, 2, 4, and 5 and instead, 
drop-ship them directly from the 
supplier. Note that due to the uncertain 
demand, the retailer needs to store more 
than the average demand if it chooses to 
carry a product. Given a limited 
capacity, this is only possible by 
decreasing the number of carried 
products.      

 
4.4 Sensitivity Analysis  

 
To assess the robustness of the 

stochastic model and to extract some insights 
from the results, we conduct sensitivity 
analyses on two of the key parameters: space 
capacity of FCs (ߚ௞ ) and service level of 
products ( ௜ߙ ). In the first part of the 
sensitivity analysis, we change the storage 
capacity of FCs and trace its effect on the 
retailer’s fulfillment decisions. We are 
specifically interested in percentage of the 
total fulfillment from the local and neighbor 
FCs as well as shipments from suppliers. For 
this sensitivity analysis, we assume FCs have 
equal storage capacities. We let the total 
storage capacity of the retailer ( ∑ ௞௞ߚ ) 
change from 10% to 100% of the sum of 
average demands, ∑ ∑ ሺ݀௜௝ሻ௝௜ܧ . The total 
fulfillment for our hypothetical example is 
4,199 units of products assuming the same 
service level for all products, ߙ௜ ൌ 0.9,			∀݅ ∈
ሼ1, … ,10ሽ. Table 7 represents the percentage 
of total fulfillment from each fulfillment 
channel.  

According to Table 7, as the storage 
capacity increases, the model uses the full 
storage for fulfillment through its FCs rather 
than sending directly from suppliers. As such, 
the percentage of orders fulfilled directly by 
suppliers decreases as the storage capacity 
increases. This would allow the retailer to 
take advantage of the reduced purchasing 
costs notwithstanding the holding and 
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assortment costs.  Between fulfillments from 
local and neighbor FCs, the share of local 
fulfillment increases in general as storage 
capacity increases. The key observation, 
however, is that after some specific level of 
storage capacity, increasing the FCs’ 

capacity does not change the optimal 
fulfillment plan as the model does not use the 
entire storage capacity and instead, always 
meets a proportion of the total fulfillment 
from the suppliers.  

 

TABLE 7. RESULTS SENSITIVITY TO FC’S CAPACITY 

 ෍ߚ௞
௞

෍෍ܧሺ݀௜௝ሻ
௝௜

൘  

 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

෍ܼ௜௝௞
௜

௝ஷ௞

 

(Neighbor) 

2.1% 4.6% 7.1% 9.1% 12.0% 15.4% 23.5% 33.7% 31.7% 31.7% 

෍ܼ௜௝௞
௜

௝ୀ௞

 

(Local) 

1.1% 2.2% 4.4% 8.6% 13.2% 16.9% 21.6% 25.7% 31.2% 31.1% 

෍ ௜ܻ௝

௜,௝

 

(suppliers) 
96.9% 93.2% 88.5% 82.3% 74.8% 67.7% 54.9% 40.6% 37.1% 37.1% 

 
 

 
 

FIGURE 2. PERCENTAGE OF FULFILLMENT OPTIONS FOR DIFFERENT 
STORAGE CAPACITIES 
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In the second part of this analysis, the 
sensitivity of the results of the stochastic 
model to changes in the service level (ߙ௜) is 
analyzed. We use the same hypothetical 
example described in Subsection 4.1 and use 
the same service level for all products, i.e., 
௜ߙ ൌ ݅∀			;ߙ ∈ ሼ1,… ,10ሽ . We let the value 
of	ߙ change from 0.8 to 0.99 with increments 
of 0.05. Tables 8 presents the estimated value 
of profit function, total amount of products 
fulfilled from suppliers, and the estimated 
excess of products (unsold) in the end of 
period for five different values of α. As can 

be seen from this table, as service level α 
increases, the overall estimated profit of the 
retailer decreases. This is because as α 
increases, the retailer must carry more 
products which ultimately leads to more 
holding and shipping costs as well as more 
expected number of unsold products. These 
factors together lead to decrease in the profit.  
Also, assuming a constant storage capacity, 
as the service level increases, direct shipment 
from suppliers takes a larger share among 
different fulfillment options.   

 
 

TABLE 8. RESULTS’ SENSITIVITY TO DIFFERENT SERVICE LEVEL (Α) 

α 0.8 0.85 0.9 0.95 0.99 

Total Excess ∑ ∑ ௜ܱ௝
ఓூ

௜ୀଵ
௃
௝ୀଵ  720 887 1,097 1,408 1,991 

Shipped from suppliers 
ሺ∑ ∑ ௜ܻ௝

ூ
௜ୀଵ

௃
௝ୀଵ ) 

% out of total expected demand 

1,614 
(44%) 

1,943 
(48%) 

2,133 
(51%) 

2,396 
(55%) 

3,025 
(63%) 

Profit ($) 26,578 24,813 23,608 22,267 18,003 

V. CONCLUSION 
 

The problem of fulfillment 
optimization is a prominent issue for online 
retailers. In this paper, we proposed Mixed 
Integer Linear Programming models for the 
fulfillment optimization problem faced by an 
online retailer. We formulated the models for 
deterministic and stochastic demand 
assumptions and solved them using a small-
scale fulfillment problem. When the demand 
of products is deterministic, the solution of 
the optimization problem is certainly 
optimized. However, under stochastic 
demand, our proposed model provides an 
estimate for the optimal solution.  

The tractability of the proposed MILP 
models makes it possible for retailers to find 
a near optimal solution for their fulfillment 
problem. MATLAB R2019a was used for 
solving these models. Robustness of our 
models was tested using sensitivity analysis 

with respect to two important parameters, 
total capacity of fulfillment centers and the 
service level. Our analysis shows that in 
some cases it is beneficial for the retailer not 
to store products at their local stores but 
instead fulfill a portion of demand using 
direct shipments from suppliers. This is 
especially true for the products where the 
difference between the purchasing cost 
before and after realizing the demand is 
negligible.   

In our models, product prices were 
considered as given parameters. Including 
pricing to the list of endogenous decision 
variables can be an extension of this research. 
We developed single-stage fulfillment 
decision models. Future extensions could 
also consider multiple stages of decision-
making.  
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