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We solve the aircraft maintenance routing problem (AMRP), with rotations for a homogeneous 
fleet and a repeated daily flight schedule (FS). We develop a new, more compact flight connection 
graph called a hollow graph. Flight connection opportunities are derived from hollow regions 
between maximum values of a deficit function representation of the FS. They allow a 
determination of the minimum aircraft fleet without need for a plane count constraint. We solve 
the AMRP as a dual-objective multicommodity integer linear program. The paper’s main 
contributions are: (1) integration of the minimum fleet size in the AMRP, (2) use of a deficit 
function representation of the FS, (3) reduction of aircraft connection graph and number of 
commodities, resulting in reduced problem size and faster run times, and (4) a dual-objective 
AMRP. Compared to existing formulations with larger fleets and connection networks we obtain 
much smaller problem sizes that execute up to 95% faster. 
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I. INTRODUCTION 
 

One of the most studied problems in 
aircraft scheduling is the aircraft maintenance 
feasible routing problem (AMRP). Given a 
flight schedule (FS) for a fleet of identical 
aircraft types, the AMRP consists of building 
aircraft routes that respect maintenance 
requirements and cover each flight in the FS 
exactly once. We assume all flights in the FS 
start and end within a finite period of length T, 
namely, a daily schedule repeated weekly. A 
set-partitioning or set-covering based 
formulation to solve the AMRP is the most 
commonly used approach. A route generator is 
used to obtain a large number of candidate 

routes. These are introduced as columns of an 
integer set partitioning problem such that each 
flight is covered exactly once. Another popular 
method is an integer multi-commodity network 
flow (MCF) problem formulation, mostly based 
on an underlying flight connection network. 
While we also use a MCF formulation, the 
difference in our approach is that we provide a 
predetermination of the minimum fleet size 
required to service the aircraft schedule of 
flights and integrate it with the standard 
formulation. Other authors allow the fleet size 
to be bounded by the aircraft carrier’s existing 
fleet size. We eliminate this “plane count 
constraint” which allows solutions with more 
than the necessary fleet size, incurring 
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unnecessary increased capital costs. Thus, our 
approach minimizes one of the largest costs of a 
commercial airline, the aircraft themselves. 
Interestingly, there are very few published 
papers on how airlines minimize this capital 
cost. Moreover, we institute a dual-objective 
function, whereby we can maximize either the 
number of “balanced” routes in which aircraft 
return to the terminals from whence they started 
or the number of “maintenance feasible” routes 
in which aircraft undergo a maintenance 
operation performed overnight.  

An aircraft route is a sequence of 
connecting flights. In order for two flights to be 
connected two main conditions must be 
satisfied: 1) the flights must arrive and depart at 
the same airport and 2) the first flight must 
arrive before the scheduled departure time of 
the second flight. Aircraft connection 
opportunities are derived from a deficit function 
(DF) representation of a flight schedule (Linis 
and Maksim, 1967), (Gertsbakh and Gurevich, 
1977). Each DF is associated with an aircraft 
terminal and is a step function that increases and 
decreases by one at flight departure and arrival 
times, respectively. The DF admits to the 
classical minimum fleet size theorem that 
determines the minimum number of aircraft 
needed to service the FS. In addition, it finds the 
number of aircraft routes that start and end at 
each terminal. DFs exhibit regions of maximal 
values between which are valleys referred to as 
hollows. Analysis of these hollows reveals that 
they are composed of the same number of flight 
arrivals and departures, which offer many flight 
connection possibilities. This observation 
allows us to develop a new type of connection 
graph referred to as a hollow graph. Hollow 
graphs are more compact than connection 
graphs used by others as only a limited number 
of specific connections are allowed. This forms 
the basis of a new integer linear 
multicommodity network formulation. The 
main contributions of this paper are the 
construction of a new type of connection 
network based on the minimum fleet size and a 

reduced set of connection arcs. This reduction is 
a result of an extended flight connection rule. In 
addition, unlike other works, our formulation of 
the AMRP finds and maintains the minimum 
fleet without the need to add a plane count 
constraint. Our formulation also uses fewer 
commodities than those of other MCF airline 
routing formulations. Consequently, we provide 
a smaller and more compact mathematical 
formulation of the AMRP. We test our 
formulation against other forms of connection 
network reduction methods to demonstrate the 
advantage of ours. Although this investigation 
addresses the airline schedule problem, it has 
applications to other domains as well, such as 
ground transportation and even job-machine 
scheduling. In summary, our main contributions 
are (1) a new methodology – the first use of the 
DF approach for aircraft maintenance routing; 
(2) integration of the minimum fleet size into 
the AMRP; (3) graph reduction, i.e., using a 
compact connection graph that is more efficient 
than those used by previous researchers; and (4) 
a new objective formulation, i.e., a dual-
objective MCFP that can be used to maximize 
either the number of maintenance feasible 
routes or the number of balanced routes. 

The following section provides a short 
review of the aircraft routing literature 
including the deficit function approach. Section 
3 introduces the deficit function representation 
of a flight schedule and its role in the classical 
minimum fleet size theorem. It also describes 
the importance of deficit function hollow 
regions and their role in feasible flight 
connections. Section 4 formulates the ARMP 
using a special compact flight connection 
hollow graph, while in section 5 the method is 
demonstrated on an example problem. A 
performance evaluation is presented in section 
6. The paper closes in section 7 with a 
conclusion and future work.  
 
II. REVIEW OF AIRCRAFT ROUTING 
  
 Finding good solutions to the AMRP is 
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challenging, and many approaches have been 
taken. Lacasse-Guay, Desaulniers, and Soumis 
(2010) and Maher, Desaulniers, and Soumis 
(2014) both review three main variations for 
solving the ARMP, e.g., strings, big-cycle, and 
one-day routes. A string is a sequence of 
connected flights that starts just after a 
maintenance check and ends with the next 
maintenance check. It can cover several days of 
flight. A paper by Xu, et al. (2019) considers a 
stochastic tail assignment under recovery 
problem, which is based on the integer flight 
string model of Barnhart, et al. (1998). In the 
big-cycle approach, routes are determined for a 
daily cyclic schedule. Each aircraft is assigned 
to this cycle with a single period delay between 
each aircraft's route. The goal of the approach is 
to equalize aircraft utilization. This method is 
most applicable to FSs that have repeated daily 
schedules. The cycle is constructed to be 
maintenance feasible by scheduling 
maintenance visits at required daily intervals. 
The routes obtained from using the string and 
big cycle variants do not consider the high 
probability that disruptions will occur during 
the operations. This factor is included in the 
one-day routes approach, which attempts to 
alleviate the effects of schedule disruptions 
from preceding days. It tries to maximize the 
number of routes that end up at a maintenance 
station at the end of one day. This stochastic 
treatment of the problem is a purely operational 
approach to the routing problem as opposed to 
the more tactical approaches of the string and 
big cycle that concatenate one-day routes to 
form complete routes. 
 The minimum fleet size problem was 
solved by the DF approach. DFs were 
introduced by Linis and Maksim (1967), 
Gertsbakh and Gurevich (1977), and Gertsbakh 
and Gurevich (1982) for airline scheduling. In 
addition, DFs have been used for scheduling of 
ground transport vehicles, i.e., buses and trains 
(Liu and Ceder, 2017), for machine job 
scheduling (Gertsbakh and Stern, 1978), and for 
aircraft and crew scheduling (Gertsbakh and 

Stern, 2017), Stern and Gertsbakh, 2019). The 
DF approach has lost favor since the 1980s to 
solve the more complicated airline routing 
problem. We resurrect the DF and use it in a 
new formulation to solve the AMRP problem. 
 Haouari et al. (2013) describe an aircraft 
routing graph with flight legs as nodes and 
feasible connections as arcs. The routing 
problems imbedded in their integrated models 
include a plane count constraint, whereby the 
number of aircraft in the fleet is given a priori. 
This is in contrast to our DF approach, where 
we make no a priori assumption on the number 
of aircraft available, but instead find the 
minimum number of aircraft needed to service 
the FS and integrate this into the AMRP. Khaled 
et al. (2018) formulate the problem as a binary 
linear programming with a connection network. 
Unlike our approach they do not require the 
aircraft routes to be cyclic. We found Cordeau 
et al. (2001) to be the closest work to ours. 
Starting with a plane count constraint for a very 
large fixed fleet size they introduce a procedure 
to reduce it to obtain the minimum possible fleet. 
Using this fleet size as a constraint, they find a 
set of feasible origin-destination paths and 
construct a path-node coefficient matrix to be 
solved for the minimum number of paths in a set 
covering problem.  Theirs is an interesting 
approach, but much more cumbersome than 
ours for finding the minimize fleet size.  
 
 

III. DEFICIT FUNCTION, HOLLOWS, 
AND FEASIBLE FLIGHT JOININGS 

 
3.1. Deficit Functions and Minimum Fleet 
Size 
 
    Let I={i: i=l, . . ., n} denote the set of 
required flight legs. Flights are flown between a 
set of terminals (airports) K={k: k=l, . . ., q}. A 
homogeneous fleet is assumed allowing any 
aircraft to carry out any flight, and each flight 
must be serviced by a single aircraft. For a flight 
i departing from terminal ki

d and arriving at 
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terminal ki
a, let ti

d and ti
a represent its departure 

and arrival times, respectively. A flight leg i is 
represented as a quadruple (ti

d , ti
a, ki

d, ki
a), 

where ki
d  ki

a. A flight schedule FS is a set of 
all flight legs {i ∈ I}. Here, the arrival time has 
been prolonged to include the minimum turn 
time between any two flights. Denote [0, T] as 
a daily schedule horizon where flights are 
excluded from crossing the 24:00 hour line. All 
flights depart and arrive within this time interval. 
Such a daily FS is said to be balanced. 
    A set of DFs may be constructed for a 
balanced FS. A deficit function is a step 
function DF(k, t) associated with a particular 
terminal k, and defined over a schedule horizon 
[0, T]. DF(k, t) increases by 1 if a flight departs 
at time t, and decreases by 1 if a flight arrives at 
time t. For a balanced FS, DF(k, 0) = DF(k, T) 
= 0. Thus, DF(k, t) = number of flights departing 
– number of flights arriving in [0, t]. DFs 
contain multiple regions or intervals of maximal 
values (plateaus). Regions between plateaus are 

referred to as hollows. Let the plateau’s 
maximal value be 
DFmax(k) = Max{DFሺk, tሻ | t  [0, T]}. Let r(k) 
equal the total number of such maximal regions. 
Plateaus of value DFmax(k) are defined by 
adjacent points Mk

r = [sk
r , ek

r],  r = 1,…, r(k), 
where r is the rth maximal interval ordered from 
the left. Note that sk

r and ek
r represent times of 

the departure and arrival flights from and to 
terminal k, respectively. The one exception 
occurs when the DF reaches its maximum value 
at the end of the horizon, in which case Mk

r(k) 
has a departure not followed by an arrival, and 
ek

r(k) = T. Hollow and their regions are indicated 
as: Hk

1 = [0, sk
1], Hk

2  = [ek
1, sk

2] ,…, Hk
r(k)+1 = 

[ek
r(k), T]. The schedule horizon of DF(k, t) may 

now be partitioned into a sequence of 
alternating hollow and maximal intervals, i.e., 
(Hk

1, Mk
1, Hk

2, . . ., Mk
r , Hk

r ,…., Mk
r(k), Hk

r(k)+1). 
An example of a FS and its corresponding set of 
DFs is shown in Figure 1. 

 

 
FIGURE 1. EXAMPLE OF A 14 FLIGHT SCHEDULE AND ITS DEFICIT FUNCTIONS. 

 
 An important property of DFs is that 
they allow a simple determination of the 
minimum fleet size, i.e., the smallest number of 
aircraft required to service the FS. This is the 

fleet size that we wish to maintain throughout 
the search for a set of feasible aircraft routings. 
Linis and Maksim (1967) found that m, the 
minimum number of aircraft required to service 
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a FS, equals the sum of the maximum values of 
all q DFs, i.e.,  

m = ∑ DFmax(k)௤
௞ୀଵ ൌ ∑ MaxሼDFሺ݇,௤

௞ୀଵ
ݐ	|	ሻݐ ∈ ሾ0, Tሿሽ   (1) 

In addition, the DF(k, t) provide the number of 
aircraft that start and end their routes at terminal 
k (not necessarily the same aircraft) . For the 
example in Figure 1, we see from the DFmax 
values that the minimum fleet size m is 4 and 
the number of aircraft starting from terminals A 
and B are 3 and 1, respectively. 

 
3.2. Hollow Analysis and Feasible Flight 
Joinings 
 
 Hollows are key regions of DFs to look 
for feasible joinings between arrival and 
departure flights which form aircraft routes. In 
order for a flight j to be joined to a previous 
flight i, there needs to be a feasible joining. Two 
flights i and j may be feasibly joined by the 
same aircraft only if the following precedence 
relation R is satisfied.  

R: i ≺ j ∋ ti
a ≤ tj

d and kj
d = ki

a                  (2) 
Each hollow may be represented as a bipartite 
graph whose nodes belong to two disjoint sets I 
and J. Nodes in I and J are comprised of arrival 
and departure flight numbers, respectively. Arcs 
directed from I to J represent feasible flight 
connections. 
 The key operation in forming aircraft 
routes is “feasible flight joinings.” Gertsbakh 
and Gurevich (1977) have shown an arriving 
flight in any hollow must be connected to a 
departing flight in the same hollow in order to 
achieve a set of aircraft routes that maintain the 
minimal fleet size. Conversely, connecting an 
arrival flight in a hollow to a departing flight in 
any other hollow will result in the set of routes 
exceeding the minimal fleet size. In addition, 
the following connection rule allows the 
construction of m routes such that each flight 
appears in exactly one route.  
 
 

Expanded Flight Joining Rule 
 
Flights i and j can be joined if and only if:  
(i) Arrival Time Flight i (with turn around) 

≤ Departure Time Flight j, 
(ii) Arrival Terminal Flight i = Departure 

Terminal Flight j, and  
(iii) Flights i and j appear in the same 

hollow of DF(Term) 
In other words, flights i and j in any hollow Hk

r 
may be feasibly joined only if kj

d = ki
a = k and 

ek
r < ti

a, tj
d < sk

r+1 ∋ Hk
r = [ek

r, sk
r+1].   

 
IV. FORMULATION OF THE AMRP 
USING HOLLOW GRAPHS  
 
4.1. Notation 

 
 The following notation pertains to a FS, 
its representation as a connection graph G, and 
our AMRP formulation. We use the terms 
commodity and terminal interchangeably. 
 
I = {i: i = l, . . ., n}, the set of required flight legs. 
FS = the set of all flight legs {i ∈ I}, a flight 

schedule. 
K = {k: k = l, . . ., q}, the set of terminals 

(airports) or commodities. 
m = the minimum number of aircraft needed to 

service a FS (minimum fleet size). 
ti

d, ti
a = flight i’s departure and arrival times, 

respectively. 
ki

d, ki
a, = flight i’s departure and arrival 

terminals, respectively. 
(ti

d , ti
a, ki

d, ki
a) = a flight leg i (ki

d  ki
a).  

[ks - i1- i2,-….,- iw - ke] = a route for a sequence 
of w flights with start (end) terminals ks 
(ke). 

sk = origin node for terminal k. 
tk = destination node for terminal k. 
S = set of supply (origin) nodes: S = {sk | 

kK}, |S| = q. 
T = set of demand (destination) nodes: T = {tk | 

kK}, |T| = q. 
N ൌ I ∪ S	 ∪ T 
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G = [N, A] is a directed acyclic graph 
representing a connection network of a 
FS, where N and A are the node and arc 
sets, respectively.  
A predecessor/successor of node i is a 
node j connected to i by a directed arc 
(j i)/(i j). 

B(i) = set of predecessor nodes of node i. 
A(i) = set of successor nodes of node i. 
Sk = an integer equal to the supply of 

commodity k at node sk. 
Tk = an integer equal to the demand of 

commodity k at node tk. 

M = set of maintenance terminals, M  K. 
 
 From the set of DFs, we can obtain m, 
the minimum fleet size (number of aircraft 
routes), the total number of routes, Sk, starting 
(supply) and, Tk, ending (demand) at each 
terminal k.  
 
4.2. Hollow Graphs 
 
 We formulate the AMRP as a dual-
objective integer multicommodity flow 
problem (MCFP) which rests upon an 
underlying flow graph. In aircraft routing 
formulations such a graph is called a connection 
graph, where flights are represented by nodes 
and feasible connections (joinings) between 
pairs of flights as directed arcs. The size of a 
connection graph varies according to the 
assumptions made by various researchers. We 
introduce a compact version of the common 
connection graph called a hollow graph. 
 Each hollow may be represented as a 
bipartite graph, whose nodes belong to two 
disjoint sets I and J. Nodes in I are comprised of 
arrival flight numbers while nodes in J are 
comprised of departure flight numbers. Arcs 
directed from I to J represent feasible flight 
connections. These bipartite graphs are 
coalesced as subgraphs to form a connection 
graph which we denote as a hollow graph G = 
[N, A]. Each node of G appears in two bipartite 
subgraphs, one representing the flight’s arrival 

and the other its departure. A gluing operation 
is used to collapse these two nodes so that a 
flight is represented by a single node. This 
results in each node appearing in two 
overlapping binary subgraphs, once in the left 
set of nodes and once on the right set of nodes. 
The exception is for departing and arrival flights 
that appear in special start and end hollows and 
are connected directly to source and sink nodes. 
These sources and sink nodes are dummy 
terminal nodes, added to represent the 
counterparts of these flights. For example, in 
Figure 1 the three flight arrivals in the last 
hollow of terminal A will be connected to a 
dummy terminal node A. The arc set A contains 
all arcs in the bipartite subgraphs plus the arcs 
emanating and entering the supply and demand 
nodes S and T. This results in the size of the 
node set N being n + 2q. A hollow graph is a 
minimum fleet size sustainable graph. Any 
additional arcs between flight nodes, although 
representing feasible connections, may lead to 
solutions requiring additional aircraft. 
 
4.3. Formulating the AMRP as a Dual 
Objective Integer MCFP  
 
 Two objective functions are logical 
candidates for the model. One is to maximize 
the number of routes that are cyclic and the 
other is to maximize the number of maintenance 
feasible routes. As the problem is formulated for 
a daily schedule, all routes may not be cyclic or 
maintenance feasible. Thus, increasing the 
number of routes that are cyclic may result in a 
decrease in the number that are maintenance 
feasible, and vice-versa. It is then natural to 
identify the Pareto frontier. Since some routes 
may end up not being cyclic, it is possible for a 
route to reach a demand node of a different 
commodity. For example, a unit flow from sA 
need not reach tA, but may arrive at another 
demand node tk ≠ tA. Thus, maximizing the 
flows from sk to tk is equivalent to the first 
objective of maximizing the number of cyclic 
routes. In what follows we use the terms 
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balanced for cyclic routes and unbalanced for 
noncyclic routes. First, let R be the set of all 
triples {ijk} representing the possibility of 
commodity k flowing on arc (ij). Our model 
uses a binary decision variable for each element 
of R.  

௜௝ݔ                    
௞ ∈ ሼ0,1ሽ,			∀{ijk} ∈ ܴ         (3) 

In this context, a decision variable is 1 if a route 
starts at terminal k and includes flights i and j in 
sequence, and 0 otherwise. Two sets of 
auxiliary binary variables are employed to 
compute the total number of balanced routes 
and maintenance feasible routes, respectively. 

In particular, the variable ܾ௜௝
௞ 		equals one only if 

a route starts at terminal k, and passes through 
flight i immediately before ending at terminal k, 
while 	 ௜݂௝

௞	 equals one only if a route passes 
through flight i immediately after or before a 
maintenance terminal, i.e., if either k ∈ M or 
t௝ ∈ M.  
 The model has six constraints sets, in 
addition to those defining the decision 
variables.  
 
 

 
             ∑ ୱೖ௝ݔ

௞
௝∈୅൫ୱೖ൯ ൌ S௞,			∀݇ ∈ K                                                   (4) 

         ∑ ∑ ௜୲ೖݔ
௪

௜∈୆൫୲ೖ൯௪∈୏ ൌ T௞,			∀݇ ∈ K                 (5)                        

           ∑ ∑ ௜௝ݔ
௞

௜∈୆ሺ௝ሻ௞∈୏ ൌ 1,				∀݆ ∈ I                                                         (6)                        

    ∑ ௜௝ݔ
௞

௜∈୆ሺ௝ሻ ൌ ∑ ௝௜ݔ
௞

௜∈୅ሺ௝ሻ ,				∀݆ ∈ I	and	݇ ∈ K                                 (7)      

        ܾ௜௝
௞  ൌ ሺ݇ ൌൌ ݆ሻ	ݔ௜௝

௞ ,    ∀{ijk} ∈ ܴ ∋ ݆ ∈ K	and	݅ ∈	B(tj)   (8)      

௜݂௝
௞ ൌ ሺ݇ ∈ ݆		||		ܯ ∈ ௜௝ݔ	ሻܯ

௞ ,    ∀{ijk} ∈ ܴ ∋ ݆ ∈ K	and	݅ ∈	B(tj)              (9)      

௜௝ݔ      
௞ ∈ ሼ0,1ሽ,			∀{ijk} ∈ ܴ                                                                        (10) 

ܾ௜ௗ
௞ , ௜݂ௗ

௞ ,	 ∈ ሼ0,1ሽ,			∀{ijk} ∈ ܴ ∋ ݆ ∈ K	and	݅ ∈	B(tj)          (11) 
 

Constraints (4) and (5) are commodity 
supply and demand constraints, respectively. 
Although Eq. (5) allows unbalanced routes 
between non-identical terminals (commodities), 
Eq. (8) has been added to count the number of 
such unbalanced routes (which may be 
minimized in the objective function). 
Constraints (6) insure the flow into each flight 
node is one, so that each flight lies on exactly 
one route. Constraints (7) are conservation of 
flow constraints for the flight nodes. Constraints 
(8) and (9) compute binary variables indicating 
whether or not end-of-day arcs lie on balanced 
and maintenance feasible routes, respectively. 
The logical expressions embedded within these 
constraints are available in many modern 
algebraic modeling systems, such as the one we 
used to formulate and solve the problem 
(CPLEX). Decision variable declarations are 
repeated in (10) and (11) for completeness. 
Unlike set partitioning based formulations 

which contain exponentially many variables, 
this formulation uses a polynomial number of 
variables and constraints, where the number of 
variables is ~ q|A| and the number of constraints 
is 2q+n+nq+m = n(1+q)+2q+m ~ qn+m. 
 
 We consider the two objectives shown 
in (12) and (13).  

Max	TB ൌ ∑ ∑ ܾ௜୲ೖ
௞

௜∈୆൫୲ೖ൯௞∈୏	         (12) 

Max	TF ൌ ∑ 	∑ ௜݂୲ೖ
௞

௜∈୆ሺ௧ೖሻ௞∈୏         (13) 
 
To find the Pareto frontier we define problem 
P(RB) which maximizes TF (13), subject to 
constraints (4)-(11) plus an additional constraint 
(14), which is just (12) with a fixed value of RB.  

∑ ∑ ܾ௜௝
௞

௝∈஻൫௧ೖ൯௞∈௄ ൌ R୆                 (14) 
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Solving a sequence of problems P(RB) for RB 
ranging from 0 to TB* generates a set of 
solutions that form a Pareto frontier. If the 
optimal solution to P(RB) is TFB

*, then the 
solution to P(RF) can be denoted as the ordered 
pair [RB, TFB

*]. The set of such ordered pairs for 
all values of RF trace out the Pareto frontier. TF* 
denotes the largest number of maintenance 
feasible routes found for P(RB) after solving 
across all possible values of RB.  

 
V. EXAMPLE PROBLEM WITH 30 
FLIGHTS AND 4 TERMINALS 
 
 To illustrate, we use a 30 flight, 4 
terminal example problem whose FS is given 
in the Appendix. The corresponding DFs are 
shown in Figure 2 below. 

 FIGURE 2. DFS FOR THE 30 FLIGHT, 4 TERMINAL PROBLEM. 

For this problem the number of aircraft 
starting their routes at each terminal is DFmax(k) 
= Sk = Tk = 1, 4, 4, 3 for k = A, B, C, D, 
respectively, so the minimum fleet size m = 
∑ ሺS௞ሻ௞∈୏ ൌ ∑ ሺT௞ሻ௞∈୏ ൌ 12.   The associated 
hollow graph G appears below in Figure 3, 
where the nodes labeled 1 to 30 correspond to 
the 30 flights given in the FS. In all there are 10 
hollows in G represented by their bipartite 
subgraphs. In addition, there are 4 source nodes 
and 4 sink nodes labeled by sk and tk, 
respectively. The arc set of size 71 is comprised 
of flight connection arcs and commodity supply 

and demand arcs. Terminals B and C are 
assumed to be maintenance terminals so the 8 
routes starting at nodes sB and sC are 
maintenance feasible. 
 We solved this problem using the well-
known mathematical programming software 
package ILOG CPLEX Optimization Studio, 
available from IBM (2019). Solving P(RB) for 
RB = 3, 4, …, 7 generates the Pareto frontier 
shown in Figure 4. (Problems outside this range 
of RB values were infeasible.) The Pareto graph 
illustrates the trade-off between balanced and 
maintenance feasible routes. For example, the 
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maximum number of maintenance feasible 
solutions of 12 can only be achieved when the 
second objective does not exceed 4 balanced 
routes. Details of the routes in the maximum 

maintenance feasible solution are shown in 
Table 1 below. 
 

 

 
FIGURE 3. HOLLOW GRAPH FOR THE 30 FLIGHT, 4 TERMINAL PROBLEM. 

 
 

 
FIGURE 4. PARETO FRONTIER FOR DUAL OBJECTIVES OF EXAMPLE PROBLEM. 
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TABLE 1. MAX MF PARETO SOLUTION FOR THE EXAMPLE PROBLEM 

 
 Route Bal? MF?  Route Bal? MF? 

R1 A-17-4-C No Yes R7 C-10-30-D No Yes 
R2 B-1-15-B Yes Yes R8 C-13-D No Yes 
R3 B-7-23-19-A No Yes R9 C-8-D No Yes 
R4 B-14-2-B Yes Yes R10 D-3-20-B No Yes 
R5 B-16-26-27-28-B Yes Yes R11 D-5-24-C No Yes 
R6 C-25-22-18-9-C Yes Yes R12 D-29-21-6-11-12-C No Yes 

     Total TB=4 TF=12 

To obtain an “all balanced” solution, 
unbalanced routes must be converted into 
balanced routes. The complete details of this 
procedure appear in Stern and Gertsbakh (2019).  

 

VI.  PERFORMANCE EVALUATION 

 Our method and formulation cannot be 
directly evaluated against other formulations 
that have appeared in the literature, primarily 
because the assumptions behind the approaches 
are inconsistent and the lack of documented 
details. Therefore, our performance evaluation 
will be based on the types of connection graphs 
and the assumption on the number of 
commodities. Two types of evolution are made 
here, one based on problem size and the other 
on run time performance. The first is measured 
by size of the underlying network, which 
directly affects the problem size, and the second 
by run time ticks. A tick is a deterministic unit 
of computational work whose correspondence 
to clock time varies by platform but which is 
consistent for a given platform carrying the 
same load. 
 
6.1. Comparing Our Formulation to 
Previous AMRP Approaches 
 
 Compared to the set covering approach 
we do not need to generate a large sample of 
routes. Most other formulations assume the size 
of the aircraft fleet is equal to the existing fleet 
of the airline. By contrast, we find the minimum 

fleet size aircraft fleet needed to service the 
existing FS. In addition, our formulation allows 
for dual objectives: one maximizing the number 
of cyclic routes and another maximizing the 
number of maintenance feasible routes. We also 
construct a reduced flight connection network 
compared to those used in other formulations. 
Most formulations assume each plane in the 
fleet is a commodity, inducing many more 
feasible connection arcs in the underlying 
connection network, as well as replicating the 
set of commodity flow variables. Our 
formulation, instead, uses only a number of 
commodities equal to the number of terminals, 
which is generally much lower than the number 
of planes.  
    Because we cannot directly compare our 
formulation with others we will focus on the 
advantage of our hollow connection graph and 
the number of commodities used in our 
formulation compared to others in the literature. 
The number of connection arcs in our 
formulation is the minimum required to 
preserve the minimum fleet size. Others 
determine the number of flight connections by 
considering candidate connections based on 
only the first two conditions of our expanded 
flight joining rule.  Two common methods are 
to (1) allow a connection from a flight node to 
the w nearest feasible flight nodes, and (2) allow 
connections to all flight nodes that satisfy the 
first two feasibility conditions. Using these 
methods, we conduct a comparative connection 
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graph experiment for 3 different connection 
graph cases. Moreover, in the traditional MCFP, 
each route from a source to a sink is a single 
commodity. In our formulation all routes 
emanating from a single terminal are grouped as 
a single commodity, significantly reducing 
problem size since, in most real aircraft 
situations, the number of aircraft routes is much 
larger than the number of aircraft terminals. 

6.2. Evaluation Based on Connection Graphs 
 
 In his doctoral thesis Gronkvist (2005) 
describes a number of connection network 
reduction techniques, describing how the 
connection network can be preprocessed to 
reduce its size. The most applicable to ours is 
the w-FIFO heuristic network filtering method 
which allows connections to the first w feasible 
departing fights. However, such heuristics do 
not filter out all unnecessary connections. Our 

hollow graph connection graph, by contrast, 
contains only the absolute minimum number of 
connections arcs. We compare 3 types of 
connection graphs for the 4-commodity case: 
1) Hollow Graph: Feasible connections in the 

hollows of all DFs according the Expanded 
Flight Joining Rule are considered. 

2) 4 Nearest Connections (4-FIFO): For a 
given flight arrival at a terminal, the 4 
nearest feasible departures are considered. 

3) All Feasible Connections: For a given 
flight arrival at a terminal, all feasible 
“downstream” departures are considered 
(which may include out-of-hollow 
departures). 

 
In all three cases, connections directly from Sk 
to Tk are not counted. Table 2 depicts the 
number of connection arcs in each case for the 
30 flight, 4 terminal example problem. 

 
TABLE 2. COMPARISON OF THE NUMBER OF ARCS FOR 3 TYPES OF  

CONNECTION GRAPHS (USING 4 COMMODITIES) 
 

Deficit 
Function 

Hollow  
Graph 

4 Nearest 
Connections 

All Feasible 
Connections 

DF(A) 12 22 29 
DF(B) 41 44 78 
DF(C) 10 13 15 
DF(D) 8 12 13 
Total 71 91 135 

 
 

 TABLE 3. COMPARISON OF NETWORK SIZES FOR 4 AND 12 COMMODITIES CASES 
 

       

 
  4 Commodities Case 

 
Hollow Grapha 

4 Nearest 
Connections 

All Feasible 
Connections 

Commodity Flow Variables 127 165 253 
Constraints 247 313 388 

Run Time (ticks) 1.72 2.10 3.27 
  12 Commodities Case    

Commodity Flow Variables 517 768 1122 
Constraints 1106 1691 2171 

Run Time (ticks) 16.57 18.03 32.48 
a The network size is comprised of the hollow graph plus the arcs and nodes from and to the commodity 

sources and sinks. 
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6.3 Evaluation Based on Number of 
Commodities 
 
 While many authors consider each 
aircraft as a commodity, our formulation treats 
all aircraft flowing out of a given terminal as a 
single commodity. Since the number of 
terminals is normally much smaller than the 
number of aircraft in a given fleet, our approach 
considerably reduces both the size of the 
underlying MCF graph and the number of 
commodity flow variables.  
 
6.4 Discussion of Results  
 
 Table 2 shows that our hollow graph 
formulation provides an appreciable decrease in 
the number of arcs of the connection graph 
ranging from 22 to 47%. Consequently, there 
are corresponding reductions in model size 
(number of variables and constraints) and run 
time, as seen in Table 3. In particular, in the four 
commodities case, the hollow graph connection 
network reduces the number of commodity flow 
variables by 50% and 23%, respectively, over 
that required by the all-feasible and four nearest 
connections networks; in the 12 commodities 
case, the reductions were 54% and 33%, 
respectively. These improvements lead to faster 
model run times. Table 3 indicates that using the 
hollow connection graph as opposed to the all-
feasible connection graph yields a 47% speed 
up when both formulations use four 
commodities. Furthermore, comparing our 
formulation based on the hollow graph 
connection network with four commodities to 
that based on the all-feasible connection graph 
with 12 commodities shows an 89% decrease in 
the number of commodity flow variables (from 
1122 to 127) and a 95% drop in solution time 
over (from 32.48 to 1.72 ticks). 
 
 
 

VII.  CONCLUSION AND FUTURE 
WORK  
 

 This article has provided a new 
formulation of the AMRP for a repeated daily 
flight schedule with a homogeneous fleet of 
aircraft. We believe it is the first formulation to 
integrate the minimum fleet size found from 
deficit function theory into the AMRP. Using a 
deficit function representation of FS, with 
regions between maximal values called hollows, 
we extended the classical flight joining rule so 
that the number of arcs in the connection graph 
is appreciably reduced. This formed the basis of 
a new type of connection graph called a hollow 
graph. Moreover, our formulation ensures that 
the plane count remains equal to the minimum 
fleet size. We compared the size and run times 
of our formulation to other formulations using a 
variety of connection graphs and number of 
commodities, and showed that our approach 
reduced problem size by as much as 89% and 
solution time by up to 95% for a 30-flight, 4-
terminal example. 
 Our approach has several advantages 
over the two main formulations seen in the 
literature, the set covering approach and the 
multi-period formulation. First, those 
approaches solve the AMRP without integrating 
the minimum fleet size condition, yielding 
solutions that require more aircraft than are 
necessary, up to an amount equal to the number 
of aircraft already owned by the airline. Second, 
other papers fail to consider the trade-off 
between maintenance feasible routes and cyclic 
routes. Classically, each route in the solution 
should be maintenance feasible, meaning that 
each aircraft should visit a maintenance 
operation. We added the important condition 
that routes should be cyclic. Maximizing the 
number of cyclic routes is crucial in practice as 
it allows crews and aircraft to return to their 
home bases, reducing the cost of overnight stays. 
Thus, we expanded AMRP by considering it as 
a dual-objective MCF ILP problem. 
Furthermore, from a mathematical 
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programming perspective, the MCF 
formulation that we use has only a polynomial 
number of variables whereas the set covering 
approach has an exponential number of 
variables. 
    Finally, we were surprised to find no 
literature analyzing the optimization of one of 
the main capital resources of an airline, i.e., the 
number of planes in the fleet. All scheduling 
analysis assumed the current number of planes 
as a given. The advantages of finding the 
minimum fleet size is that, once it is found, 
airlines can reduce or increase their existing 
fleet accordingly. Placing our work in the 
context of others, the salient difference is that 
we introduce a procedure to find the maximal 
number of daily (single-period) balanced and 
maintenance feasible routes, while ensuring a 
solution that uses the minimum number of 
planes. While we developed this methodology 
for the single-period AMRP problem, we intend 
to use it as a springboard to solve problems with 
a multi-period FS. In addition, we plan to 
include constraints on the available 
maintenance capacity of each terminal.  
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APPENDIX 
 

FLIGHT SCHEDULE FOR THE 30 FLIGHT, 4 TERMINAL EXAMPLE. 
Flight Depart Arrival Depart Arrival Flight Depart Arrival Depart Arrival
No. Time Time Term Term No. Time Time Term Term 
1 4.50 12.00 2 4 16 5.50 8.50 2 1 
2 14.50 20.50 4 2 17 9.00 12.50 1 2 
3 8.50 15.50 4 1 18 15.00 17.50 1 2 
4 16.50 21.00 2 3 19 16.00 19.50 2 1 
5 9.00 16.00 4 2 20 18.50 22.00 1 2 
6 11.50 13.00 2 3 21 8.00 11.00 1 2 
7 6.00 10.50 2 1 22 10.00 13.00 2 1 
8 11.00 16.50 3 4 23 11.00 15.00 1 2 
9 18.00 21.50 2 3 24 18.50 22.50 2 3 
10 7.00 11.00 3 2 25 5.50 8.50 3 2 
11 13.50 17.00 3 2 26 9.00 13.50 1 2 
12 18.00 23.00 2 3 27 14.00 17.00 2 3 
13 10.50 15.50 3 4 28 17.50 21.50 3 2 
14 7.00 13.50 2 4 29 3.00 7.00 4 1 
15 13.00 20.00 4 2 30 12.00 15.00 2 4 

  


