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In recent years, supply chain networks have been increasing in complexity due to the globalization 
of manufacturing operations. In a capacitated planning problem with intermediate distribution 
centers (DCs), decisions must be made for production lot sizes, production schedules, shipment 
amounts between locations and more. These models generally consist of a non-linear objective 
and are difficult to solve. In this paper, we formulate the Capacitated Production, Inventory, and 
Distribution Problem (CPIDP) for multiple products on a single production line in the supply chain 
network and develop an efficient simulated annealing (SA) algorithm and various improvement 
heuristics. We then present the computational results that demonstrate the reliable and robust 
performance of our approach. 
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I. INTRODUCTION 

 
The integrated model considered in 

this paper is motivated by the current 
operations of a major global manufacturing 
company that produces paper-based 
consumer products. It has several plants in 
Latin America in each of which various 
products are manufactured on a single 
production line. The products are then 
shipped from its plants to distribution centers 

(DCs). Distribution operations such as 
storage in the DCs and the shipments from 
the DCs to the retailer stores are executed 
largely by other companies. In order to 
reduce the total costs of transportation, 
inventory management, and production setup, 
accrued by such a firm, the complex 
interactions between production and 
distribution operations must be analyzed 
simultaneously.  
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The Capacitated Production, 
Inventory, and Distribution Problem (CPIDP) 
introduced in this paper addresses a supply 
chain network consisting of multiple plants 
and DCs. The plants have limited production 
capacity and only a single production line. 
The objective is to minimize the sum of 
transportation, inventory holding, and 
production setup costs. The CPIDP 
simultaneously determines production lot 
sizes, production scheduling, and shipments 
of multiple products between plants and DCs. 

There are two streams of research in 
the logistics literature that are related to the 
CPIDP.  One of which is the Economic Lot 
Scheduling Problem (ELSP) (Hanssmann, 
1962; Maxwell, 1964; Bomberger, 1966; Hsu, 
1983). However, these authors only consider 
determining a cyclic schedule for making 
multiple products on a single production line 
within one plant without handling a complex 
supply chain network consisting of multiple 
plants and multiple DCs. The other stream of 
research related to the CPIDP proposes 
integrated production, inventory, and 
distribution models  (Blumenfeld, Burns, 
Diltz, and Daganzo 1985; Benjamin, 1989; 
Tang, Yung, and Ip, 2004; Yung, Tang, Ip, 
and Wang, 2006); however these models all 
assume the Economic Order Quantity (EOQ) 
policy for inventory management. The EOQ 
assumes that each product can be treated 
independently and does not consider 
scheduling of multiple products. Therefore, 
most previous integrated models do not fit the 
environment we wish to model, which has 
limited capacity at the plants and hence 
products cannot be considered independently 
(e.g. inventory management for multiple 
products on a single production line). 

In this paper, we introduce the CPIDP 
that combines a variant of the Economic Lot 
Scheduling Problem (ELSP) with the 
transportation problem and thus brings 
together the two above-mentioned disjoint 

research efforts. The CPIDP is also able to 
capture the capacity limitations at the plants 
not just through fixed exogenous capacity 
constraints but through setup times. To the 
best of our knowledge, there is no model in 
the literature that integrates transportation, 
inventory management, and production with 
setup times for multiple products in the 
supply chain network. 

We prove that the CPIDP is NP-hard 
by showing that a special case of the problem 
is equivalent to the Generalized Assignment 
Problem (GAP). A formal proof is given in 
Appendix A. Therefore, we develop various 
heuristic approaches including Simulated 
Annealing (SA) and assess their performance 
under a variety of input parameters and 
control parameter settings. 

Our model also provides managerial 
insights into the behavior of production and 
distribution operations that are adopted by 
firms. Schmenner (1979) discusses various 
multiple plants manufacturing strategies 
qualitatively based on survey data. Two 
major plant strategies Schmenner identifies 
in his seminal work are “product plant 
strategy” and “market area plant strategy”. In 
a product plant strategy, plants make distinct 
products, each plant serving the company’s 
entire market demand for that specific 
product. A market area plant strategy leads 
the firm to operate at the other end of the 
spectrum, in that each plant produces all or 
most of the products, serving only a limited 
geographical market area. However, there 
seems to exist no quantitative model that 
produces solutions leading to the two 
extreme strategies identified by Schmenner 
(1979).  

We claim that the CPIDP provides a 
quantitative basis for the strategic analysis by 
Schmenner (1979). In our extensive 
computational experiments, the pattern of 
production and distribution solutions 
generated by our proposed model spans the 
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range between the two extreme multiple-
plant manufacturing strategies practiced by 
firms, depending on the relative magnitudes 
of setup and transportation costs. 

This paper is organized as the 
following: Section 2 reviews previous work 
related to our novel model and simulated 
annealing (SA) solution approaches in the 
domain of production scheduling and 
distribution planning. Section 3 presents the 
proposed problem description and the 
mathematical model formulation. Section 4 
describes various solution approaches 
including simulated annealing (SA) for 
solving the problem. In Section 5, we 
systematically assess the performance of 
various heuristics and investigate the impact 
of input parameters on the resulting network 
structure. Section 6 discusses the conclusions 
of the research and possible future studies. 

 
II. LITERATURE REVIEW 
 
2.1. Integrated Models and Solution 
Approaches 

 
Traditional approaches had analyzed 

production, inventory, and transportation 
operations separately rather than considering 
the entire operation as a whole (Bertazzi and 
Speranza, 1999; Glock, 2012). For example, 
when deciding inventory levels and 
shipments of products on a given logistics 
network, typically inventory levels were 
determined first and then the shipments of 
products were determined. However, as 
manufacturing industries have gone global 
and more competitive, simultaneous analysis 
of the complex interactions between 
production and distribution operations had 
become essential to achieve efficiency 
(Sarmiento and Nagi, 1999). Even though 
this integrated analysis received much 
attention, as of 1999 there were still a limited 
number of contributions in this area (Bertazzi 

and Speranza, 1999; Sarmiento and Nagi 
1999), especially in the integrated analysis of 
production and distribution with the goal of 
minimizing the sum of transportation, 
inventory, and production setup costs for the 
multiple products in the multiple 
supplier/destination settings.  

The earlier integrated network 
models focus on the single plant case; 
Chandra and Fisher (1994) integrate 
production scheduling and vehicle routing 
problems and Blumenfeld, Burns, Diltz, and 
Daganzo (1985) develop an economic order 
quantity (EOQ) based model to analyze the 
trade-offs between inventory, transportation 
and production setup costs. For a multiple 
supply and demand point network, Benjamin 
(1989) presents a formulation that combines 
the production lot size and the transportation 
problem and devises a heuristic based on 
Bender’s decomposition. However, the 
author assumes that the annual production 
level at each supply point is pre-determined 
and only one product case is considered. 
Following Benjamin’s work, after a gap of 15 
plus years, Tang, Yung, and Ip  (2004)  and 
Yung, Tang, Ip, and Wang (2006)  relax the 
key assumption that the annual production 
amount at each plant is pre-determined. The 
problem is more difficult to solve since the 
annual production level affects production lot 
size, shipment amounts, and periodic order 
quantities.  To handle the increased 
complexity, Tang, Yung, and Ip  (2004)  
break down the entire problem into two 
hierarchical subproblems and solve them 
sequentially. Yung, Tang, Ip, and Wang 
(2006) point out that the sequential solution 
approach in Tang, Yung, and Ip (2004)  does 
not capture the trade-offs between production 
and transportation costs; to simultaneously 
consider transportation costs when deciding 
production lot size and annual production, 
Yung, Tang, Ip, and Wang (2006) develop a 
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more sophisticated method, using Lagrange 
multipliers.  

Other integrated network models 
include Park (2005), who studies an 
integrated production planning and 
transportation model with multiple retailers, 
products, and periods. A two-phase heuristic 
model is used to solve the resulting mixed 
integer program. The heuristic first obtains an 
initial solution for distribution and 
production decisions. Transportation 
parameters are then modified to improve the 
solution. Zegordi, Abadi, and Nia (2010) 
study a two-stage supply chain scheduling 
problem where multiple suppliers must 
deliver parts to one single manufacturing 
plant. They prove that the model is NP-Hard, 
and a gendered genetic algorithm (GGA) is 
shown to perform well for this setting. 
Darvish (2016) presents an alternative 
approach to the scheduling and lot-sizing 
problem in a multi-plant, multi-period setting, 
under the idea of the Physical Internet (PI). 
While the PI allows transportation models to 
be simplified and improves transportation 
efficiency overall, at the writing of this paper, 
the real-world logistics infrastructure still 
differs from the PI significantly. 

The two distinguishing aspects of our 
work from the aforementioned integrated 
models are one, the way the capacity 
constraints are modeled and second, the 
assumed inventory model for handling 
multiple products in each plant. The previous 
integrated models capture the capacity 
limitations through hard capacity constraints, 
which model the average production flow 
through plants and Distribution Centers 
(DCs); the CPIDP we propose models the 
capacity limitation dynamically through 
setup times, as production lot sizes at each 
plant are being solved for simultaneously. 
Furthermore, these previous integrated 
models all assume a class of Economic Order 
Quantity (EOQ) policy for inventory 

management. The EOQ implies that each 
product can be handled independently of all 
others, so it does not consider scheduling of 
multiple products. In certain circumstances 
like inventory management for multiple 
products on a single production line, the EOQ 
cannot be a reasonable assumption.  

To this second point, the other stream 
of research closely related to the CPIDP is the 
inventory management of multiple products 
on a single production line, referred to as the 
Economic Lot Scheduling Problem (ELSP), 
which has been extensively studied in the 
literature. Hanssmann (1962) solves the 
ELSP with the assumption that cycle time for 
each product is all the same and no set up is 
considered. Maxwell (1964) considers the 
setup time required during changeover from 
one product to another product. Elmaghraby 
(1978) reviews various early contributions to 
the ELSP and divides these into two broad 
categories: analytical approaches that 
achieve the optimum of a restricted version 
of the original problem; and heuristic 
approaches that achieve “good” solutions of 
the original problem. Hsu (1983) shows that 
a restricted version of the ELSP is NP-hard. 
The author takes into consideration different 
cycle times, but restricts the frequency to 
powers of two.  Drexl and Kimms (1997) 
review work in the well-established area of 
lot sizing and scheduling.  

The previous works in the ELSP 
literature go beyond the EOQ when 
considering lot sizing within a single plant 
but does not capture the trade-offs between 
production, inventory, and transportation 
costs. On the other hand, the integrated 
models although have been extended to 
consider the multi-plant case, they all assume 
the EOQ model which is not appropriate for 
the multiple product case on a single 
production line. To the best of our knowledge, 
there seem to exist no model that brings the 
approaches in these two distinct research 
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streams. Therefore, it is worthwhile studying 
a new integrated model to determine 
production lot size, production scheduling, 
and shipment amounts of different products 
on a given supply chain network. In the next 
section, we briefly review the Simulated 
Annealing (SA) approach and some 
applications in the domain of production and 
distribution problems. 

 
2.2. Simulated Annealing 

 
Simulated Annealing (SA) is a well-

known and widely applied meta-heuristic that 
potentially produces high quality solutions to 
various NP-hard problems (Silver, 2004). It 
has been shown that SA algorithm converges 
asymptotically to the global optimum, 
although the worst-case time complexity can 
be exponential (Eglese, 1990). Even though a 
wide variety of heuristic approaches such as 
constructive and local improvement methods 
have been proposed to solve NP-hard 
problems in reasonable computation time, the 
fundamental weakness of these approaches is 
that they get trapped in a local optimum 
(Silver, 2004; Eglese, 1990). SA is a 
powerful solution technique for NP-hard 
problems in that SA can overcome this 
drawback by allowing non-improving moves 
with a certain probability during the 
neighborhood search (Eglese, 1990). 

We briefly review some terminology 
used in the simulated annealing process. First 
an initial feasible solution is obtained using 
some construction heuristic. Simulated 
annealing algorithm improves an incumbent 
solution through neighborhood search. A 
neighborhood is the set of feasible solutions 
that can be generated in a single move from 
the current solution. We generate a move 
from the current solution to its neighborhood, 
and then evaluate the change in the objective 
function value (e.g., the total cost). If the cost 
is reduced, then we accept this move 

(downhill move) and update the current 
solution. Otherwise, we accept this move 
(up-hill move) only with some probability. At 
the beginning of a SA algorithm, the 
temperature, which is a control parameter to 
adjust the acceptance probability for inferior 
solutions, is set to high values allowing 
almost any non-improving movement during 
the neighborhood search. By carefully and 
slowly cooling the current temperature, we 
reduce the acceptance probability that a non-
improving move can be accepted. At each 
temperature, SA tries to move from the 
current solution to its neighborhood for some 
pre-specified number of iterations; we keep 
track of the overall best solution at a given 
temperature.  Simulated Annealing algorithm 
terminates when the minimum temperature,  
the maximum available iteration, or 
maximum available run time is reached 
(Ovacik, Rajagopalan, and Uzsoy, 2000).  

Koulamas, Antony, and Jaen (1994) 
show that SA method has been widely used 
for solving various operations research 
problems and can be very useful, particularly 
when the alternative solution approaches 
involve enumeration. Vidal (1993) applies 
SA method to the traveling salesman, 
telecommunication network design, and 
facility location problems. We can also find 
such applications of SA in the domain of 
production and distribution. Palmer (1996) 
develops a SA algorithm to coordinate 
process planning and production scheduling 
and evaluates the appropriateness of various 
other solution approaches. Kim and Kim 
(1996) tackle the short-term production 
scheduling problem using SA since it is hard 
to solve the problem optimally within 
reasonable computational times if processing 
capacities of a manufacturing system and 
priority among products are considered. 
Jayaraman and Ross (2003) propose a SA 
algorithm to solve a distribution network 
design model using cross-docking.  To deal 
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with practical large-scale instances of this 
NP-hard problem, a SA heuristic is devised 
and extensively tested with various control 
parameter settings for various problem sizes. 
The solution gap between the optimal 
solution using LINGO and the heuristic 
solution from SA on average is less than 4% 
for all data sets. Running time of SA is much 
faster than that of LINGO.  

Simulated annealing has been widely 
applied in a broad area of production 
scheduling and distribution problems and has 
been reported to provide high quality solution 
in this area. It is also easy to implement. 
Therefore, we explore the use of SA to the 
integrated and capacitated production, 
inventory, and distribution model that we 
propose.  

 
III. PROBLEM DESCRIPTION AND 
MODEL FORMULATION 

 
3.1. Introduction 

 
The Capacitated Production, 

Inventory, Distribution Problem (CPIDP) 
mimics the business operations of a major 
global manufacturing company that produces 
various paper-based consumer products in 
plants located across Latin America; each 
plant has a single production line capable of 
manufacturing multiple products. The 
products are then shipped from the plants to 
the Distribution Centers (DCs), operated by 
third parties. Accordingly, for the 
development of the CPIDP, we assume that 
the logistics network such as the location and 
capacities of plants and the location of DCs 
are given; and we focus on modeling the 
operational and tactical decisions, such as the 
production lot sizes at the plants during each 
production cycle, when each product should 
be produced (the length of a production 
cycle), and shipment quantities from the 

plants to the DCs to fulfill the annual demand 
for each product occurring at the DCs.  

The objective of the CPIDP is to 
minimize the sum of four costs ensuing these 
operational and tactical decisions. The first 
cost is the production cost that may differ 
across plants due to exchange rates, tariffs, 
labor costs, etc. The second is the 
transportation cost from the plants to the DCs. 
The third cost is the setup cost that occurs 
during changeover from one product to 
another on the single production line at each 
plant. The fourth cost is the inventory holding 
cost that occurs during the production runs. 
These costs may differ depending on the 
location of the plant and also across various 
products.  

We take into account production 
capacity limitations at the plants, in each of 
which multiple products can be manufactured 
one at a time on a single production line. 
Changeover (setup) time for switching 
among different products is considered. We 
assume that setup cost is independent of 
production sequence and is proportional to 
the setup time (Bomberger, 1966). In 
determining when each product should be 
produced, we use the common cycle 
approach, that is there is exactly one setup for 
each product in a production cycle 
(Hanssmann, 1962; Maxwell, 1964; Nahmias, 
2004). This approach to modeling the 
capacity limitations differ from the classical 
approach of simply limiting the average 
throughput of a product at a plant and is a 
distinguishing feature of the model in 
comparison to other models integrating 
various operational decisions.  

We assume that the demands are 
known and constant which is a reasonable 
assumption for the type of products the 
CPIDP targets. It is then reasonable to 
assume that the total available production 
capacity across plants is large enough to 
satisfy the total demand from the distribution 
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centers, so that shortage is not allowed during 
production runs. Furthermore, we assume 
single-sourcing at the DCs, that is the 
demand for a given product at a DC is served 
by a single plant, thereby, we need to decide 
on the assignment of DCs to plants for each 
product.  

 

3.2. Mathematical Formulation 
 
We define the following notation to 

formulate the CPIDP described above. Note 
that all parameters and decision variables are 
respectively denoted by the use of lower-case 
and upper-case letters. 

Indices, Sets, and Input parameters: 

i  I  1,2,, I : A set of plants  

j J  1,2,, J : A set of products  

k K  1,2,,K : A set of distribution centers  
sijk : Unit transportation cost for product j from plant i to distribution center k 
cij : Unit production cost for product j at plant i 
djk : The demand for product j at distribution center k 
pij : The annual production rate for product j at plant i 
fij : The setup cost of product j at plant i 
hij : Unit inventory holding cost of product j at plant i  
aij : The setup (changeover) time of product j at plant i 
 
Variables: 
Xijk   1, if the demand for product j at DC k is served by plant i, 0 otherwise 
ij: Annual production quantity of product j at plant i  
Qij: Lot-size of product j at plant i 
Ti: Production cycle time at plant i (year)  
௜ܻ௝ ൌ 1, if  plant i produces product j, 0 otherwise 

 
As explained previously, during the 

common production cycle, ௜ܶ , we assume 
that exactly one lot of product j is 
manufactured. Because we also assume that 
no shortage is allowed in a production cycle, 
the lot for product j should be large enough to 
meet the demand during a production cycle. 
Thus, the lot size for product j at plant i must 
be: 

Qij  ijTi     (1) 

Extending the works of Hanssmann 
(1962), Maxwell (1964), and Nahmias (2004) 
to multi-plant case, the average annual setup 

and inventory holding cost for all products at 
plant i is given by: 

fij

ij

Qij

Yij  hij 1 
ij

pij











Qij

2











j
  (2) 

The first term in (2) is the annual 
production setup costs at plant i and the 
second term is the annual inventory holding 
costs for all products at plant i. Substituting 
equation (1) into (2), we derive the total cost 
of production setup and inventory holding 
costs across all plants in terms of ௜ܶ  as 
follows: 
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fij

Ti

Yij  hij 1 
ij

pij










ijTi

2











j


i
  (3) 

The reason for expressing these two 
costs in terms of ௜ܶ  rather than ܳ௜௝  is to 
reduce the number of variables in the 
mathematical formulation. Also, it should be 
noted that the constraints will also be 
expressed in terms of ௜ܶ . The sum of 

production costs at the plants and 
transportation costs for shipping products 
between the plants and the distribution 
centers are given by: 

cij  sijk djk Xijk
k


j


i
   (4) 

Given the above notation and cost 
components, the formulation for the CPIDP 
is as follows: 

Minimize cij  sijk d jk Xijk 
fij

Ti

Yij  hij 1 
ij

pij










ijTi

2











j


i


k


j


i
   (5) 

      Subject To 

 Xijk  1 j,k
i
         (6) 

djk Xijk
k
  ij i, j         (7) 

ij

pijj
  1 i         (8) 

aijYij 
ijTi

pij











j
  Ti i        (9) 

Xijk  Yij i, j,k         (10) 

ij  0 i, j          (11) 

Ti  0 i          (12) 
Xijk {0,1} i, j,k         (13) 

  Yij {0,1} i, j         (14) 

 
The objective function (5) minimizes 

the sum of production costs at the plants, 
shipment costs of all products from the plants 
to the distribution centers, and the costs of 
production setup and inventory holding at 
each plant. Constraint (6) along with (13) 
indicates that the entire demand for a product 
at a distribution center should be satisfied by 
exactly one plant. Constraints (7) are flow 
balance constraints ensuring that for each 
product, total annual shipment out of a plant 
is equal to the total quantity produced at that 
plant. Constraint (8) ensures that the assigned 
production quantities across all products at a 

given plant does not exceed the capacity of 
that plant (see also Nahmias, (2004)). The 
left-hand side of this constraint can also be 
interpreted as the utilization level of a plant. 
Constraint (9) ensures that within each 
production cycle, there is sufficient time to 
account for both the set-up and production 
run time of all assigned products to that plant.  
The second term in equation (9) is the actual 
production uptime, Qij/pij, re-written in terms 
of ௜ܶ  using equation (1). Therefore, 
constraint (9) indicates that the common 
cycle time at a plant should be larger than the 
sum of setup times and actual production 
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uptimes at that plant. Constraint (10) is the 
linkage constraint, ensuring that if product j 
is not being produced at plant i then no DC 
can be receiving shipments of product j from 
plant i. Equations (11) and (12) are non-
negativity constraints. Equations (13) and (14) 
are binary constraints.   

Since the CPIDP combines the 
transportation problem with the Economic 
Lot Scheduling Problem (ELSP), the parts of 
production setup and inventory costs in the 
objective function and constraints (8) and (9) 
follow the ELSP formulation provided by 
Maxwell (1964). We prove that the CPIDP is 
NP-hard by showing that a special case of the 
problem is equivalent to the Generalized 
Assignment Problem (GAP) (Refer to 
Appendix A). 

 
IV. SOLUTION METHODOLOGIES 
 
4.1. Introduction 

 
As stated above, the CPIDP is NP-

hard. Therefore, in this section we develop 
various heuristics including a construction 
heuristic providing an initial feasible solution 
in Section 4.2. In Section 4.3, we describe 
various improvement heuristics for finding a 
better solution based on the initial solution 
provided by the greedy algorithm. Lastly, the 
simulated annealing approach that yields the 
best solution for most instances of the CPIDP 
is explained in Section 4.4. 

 
4.2. Greedy Heuristic 
  
The basic idea of the greedy heuristic we 
propose is to first determine the optimal 
production cycle time, ௜ܶ at plant i in a closed 
form by temporarily assuming that the annual 
production level ߣ௜௝ is known at plant i. The 
optimal cycle times at plant i, ௜ܶ

∗ is then 
substituted back into the mathematical 

formulation to actually determine the optimal 
annual production levels and the shipments 
minimizing the total cost.  

Suppose momentarily the annual 
production levels at a plant for all products 
are ߣ௜௝ . Then we can utilize the following 
subproblem and solve for the optimal 
production cycle time: 

(15) 

Subject To 

  (16) 

      (17) 
 

If we define , 

then the objective function (15) is equivalent 

to . In order to find the optimal 

cycle time Ti at plant i minimizing the 
objective (15), we differentiate  with 
respect to Ti, yielding

G Ti 
Ti

 0  
fijYij

j


Ti
2



hij 1 
ij

pij







ij

j


2
 0

Ti
CC 

2 fijYij
j


hij 1 
ij

pij







ij

j


 

 
Since the sign of second derivative of G(Ti) 
is positive (refer to the Appendix B), Ti

CC is 
the cycle time that minimizes the objective 
(15) without considering constraint (16). 
Constraint (16) indicates that cycle time at 
plant i should be large enough to 
accommodate both production setup and 
production up time, and can be rewritten as  

Minimize
fij

Ti

Yij  hij 1 
ij

pij










ijTi

2











j


i


aijYij 
ijTi

pij











j
  Ti i

Ti  0 i

G(Ti ) 
fij

Ti

Yij  hij 1 
ij

pij










ijTi

2











j


min G(Ti
i
 )

G(Ti )
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Ti 
aijYij

j


1
ij

pijj


i    (18) 

The right-hand side of (18) is equivalent to 
the minimum time required for 
accommodating both production setup and 
production up time. Therefore, the optimal 
cycle time at plant i is as follows: 

Ti
*  Max (Ti

CC , Ti
MIN ) where Ti

MIN 
aijYij

j


1
ij

pijj


(19) 
Substituting Ti

*  into (15) gives the optimal 

objective value for a given ij . The greedy 
heuristic described next utilizes this result. 

Because we assume that a product at 
a DC is served by a single plant, we can 

assign a product at a specific DC to a plant 
until the capacity of that plant is filled up, 
thereby fixing the specific plant-product 
assignment, ௜ܺ௝௞, for that DC and increasing 
the corresponding assigned production level, 
 ௜௝, at that plant. Given the new productionߣ
levels at a DC, we can compute the optimal 
cycle time using equation (19) and the 
ensuing costs. At every step of the greedy 
heuristics, we search for the best plant-
product assignment such that the total cost 
given in equation (5) is increased the least. 
We repeat this process until every product at 
a DC is assigned to a plant.  
 

The greedy heuristic algorithm is 
summarized as follows: 
 

 
 

Step1. Sort the demands djk for product j at DC k  in descending order so that larger 
demands are assigned earlier in the process. 
Step2. Find best plant i*

jk  that serves each demand ( djk ) 

   Step2-a. Repeat the following?  procedure for every plant i,  

   

Assign d jk to plant i (Xijk 1)

ij ij  djk Xijk

If
ij

pij

 1
j
 at plant i, then keep the updated ij , Xijk

otherwise, go to next plant

 

  
Calculate Ti  from eqn (19)

Calculate total cost from eqn (5)
 

   Step2-b. Find best plant i*
jk  argmin

i
total cost  

Step3. Assign demand djk  to the found best plant i*
jk  

X
i* jk

1


i* j


i* j
 d jk X

i* jk

 

Step4. Repeat Steps 2-3 until every demand djk  is assigned 
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4.3. Improvement Heuristics 
 
We discuss four different 

improvement heuristics applied to the initial 
feasible solution constructed by the greedy 
heuristic. The greedy heuristic typically fails 
to find the global optimum in that at each 
iteration we make the best decision locally 
for production lot size, production cycle time, 
and shipments. One possible way to improve 
the initial solution is to reassign or swap 
production quantities determined by the 
greedy heuristic if it reduces the total cost. 
For example, suppose that the production 
amounts for product 1 at plant 1 is  ߣଵଵ=100 
unit and that for product 1 at plant 2 is  
ଶଵߣ =70 unit. We swap the production 
amounts for product 1 at these two plants if 
the capacity constraints at these plants are 
satisfied. If the total cost at plant 1 decreases 
more than the total cost at plant 2 increases 
after the product exchange, then we improve 
the solution by swapping production levels. 
Since the total production amount for product 
1 does not change, total demand requirement 
is satisfied.  

 
Improvement heuristics are 

categorized into four groups by how many 
products can be reassigned or swapped:  

i. RWP: It reassigns the entire 
production amount for a specific 
product at a plant to other plants 
within the capacities of plants.  
ii. RPD: It reassigns only production 
for serving the demand of a product at 
a specific DC to other plants within 
the capacities of plants.  

iii. SWP: It swaps the entire 
production for a specific product at a 
plant with that of another plant within 
the capacities of plants.  
iv. SPD: It swaps only production for 
serving the demand of a product at a 
specific DC with that of another plant 
within the capacities of plants.  
Each improvement heuristic is run 

repeatedly until no further improvement is 
obtained. Thus, it guarantees that a local 
minimum is found at the termination of each 
local improvement heuristic.  
 
4.4. Simulated Annealing 

 
We implement a Simulated 

Annealing (SA) algorithm to obtain higher 
quality solutions than those provided by the 
improvement heuristics described in Section 
4.3. In most cases, the improvement 
heuristics can only obtain a locally optimal 
solution. To avoid getting trapped in the local 
optima, simulated annealing has been widely 
used for a broad range of applications 
(Koulamas, Antony, and Jaen, 1994; Vidal, 
1993), partly because it is easy to implement 
and understand. Moreover, SA can often find 
high quality solutions close to the global 
optimum and this optimum does not depend 
on the initial solution (Eglese, 1990). 

Let S be the solution vector consisting 
of  (Xijk , ij , Yij , Ti )   and L the number of 

iterations to be performed at each given 
temperature, T.  Let ΔE be the change in the 
objective function value. The pseudo code for 
the simulated annealing algorithm is as 
follows: 

 
 



Leyla Ozsen, Paul Intrevado, Stewart Liu 
Heuristics For A Joint Capacitated Production, Inventory, And Distribution Model with Production Setup Times 

 

 
Journal of Supply Chain and Operations Management, Volume 18, Number 1, March 2020 

 
41 

 

Initial solution S = S0 
Repeat until stop criterion temperature T reaches stopping rule Tf 
   At each given temperature 
 Repeat L times 
  Generate a new set of solution S  from current solution S 
  If E  0 , then accept this move and the update solution ( S  S ) 

Else if P  exp
E

T





 uniform[0..1] , then accept this move and update the solution 

   Decrease Temperature (Tnew  cTold , where c is cooling factor) 
In the entire process, keep the best-known total cost and solution, and at the end return 
best-known cost and the associated solution. 

In order to develop an efficient 
simulated annealing algorithm, we need to 
find sufficiently large neighborhoods. As a 
perturbation method, swapping can be 
utilized. Alternatively, genetic algorithms 
such as mutation or inversion can also be 
used. Initially, we tried using the SWP 
described in Section 4.3 to generate a new 
solution. However, the SWP does not provide 

a sufficiently large neighborhood to yield 
high quality solutions. Therefore, we 
changed the perturbation method to the SPD, 
providing a much larger neighborhood than 
the SWP. 

The following pseudocode describes 
how to obtain a neighboring solution using 
the SPD procedure. 

 
 

Generate_New_Solution (S)  
Step 1. Randomly select a plant-product assignment Xijk  from current solution – i.e. 

generate a random number for index i, j, k using uniform distribution.  
Step 2. Select randomly plant-product assignment X i j k to be swapped – i.e. generate a 

random number for index i  ( i), j , and k .  
Step 3. Swap Xijk  with X i j k  based on the SPD explained in Section 4.3  

              

X i jk  Xijk , Xijk  0

Xi j k  X i j k , X i j k  0

 i j  i j  Djk , ij ij  Djk

i j i j  D j k ,  i j  i j  D j k

 

              If
ij

pij

 1
j
 at plant i or i ,  

                   Calculate Ti from equation (19) 
                   Calculate total cost from equation (5) 
              Else, go to Step 1. 
Step 4. Return a new generated solution vector S .  
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It is also important to choose an 
appropriate initial temperature and a cooling 
rate that should then be decreased at a 
sufficiently slow rate. First, we set the initial 
temperature very high so that almost any non-
improving move can be accepted at the 
beginning of the simulated annealing process. 
We use the geometric-cooling rule 
Tnew  cTold , where c < 1 and close to 1 
(Jayaraman and Ross, 2003). Cooling 
schedules such as initial temperature, 
stopping rule Tf  and the number of iterations 
at a given temperature are mostly decided 
based on empirical experience and are useful 
to improve quality of solutions and decrease 
CPU time. 

 
V. COMPUTATIONAL RESULTS 

 
In this section, we present the 

computational results for various 
combinations of the heuristics discussed in 
Section 4. In Section 5.1, we describe our 
experimental design. In Section 5.2, we 
compare the performance of our heuristics 
for various problem sizes. In Section 5.3, we 
discuss the impact of some key input 
parameters on the solution structure and draw 
managerial insights into the behavior of 
production and distribution operations. 
Section 5.4 presents our observations on 

implementing the simulated annealing 
heuristic. 

 
5.1. Experimental Design 

 
We start with listing the possible 

heuristics to be tested in the main 
experiments. In Section 4, we introduced a 
Greedy Heuristic (GH) for constructing an 
initial feasible solution, four different 
Improvement Heuristics (IHs), and the 
Simulated Annealing (SA) algorithm to find 
a high-quality solution. Starting from the 
initial solution provided by the GH, each 
improvement heuristic is run until no further 
improvement is obtained; this guarantees that 
a local minimum is found at the termination 
of each local improvement heuristic. The SA 
algorithm also starts from the GH solution 
and is run until the stopping rule is reached. 
In pilot experiments, DICOPT (Discrete and 
Continuous Optimizer) and BARON, which 
are mixed-integer nonlinear programming 
(MINLP)  commercial solvers, are also tested 
for comparison purposes with our heuristics. 
However, both of them produce infeasible 
solutions for the majority of our problem 
instances. The six heuristics to be further 
tested are summarized in Table 1. 

 
 

 
TABLE 1. ALGORITHMS TO BE TESTED IN MAIN EXPERIMENTS 

Identifier Description 
GH Greedy Heuristic 
GH+RWP RWP starting from the initial solution provided by GH 
GH+RPD RPD starting from the initial solution provided by GH 
GH+SWP SWP starting from the initial solution provided by GH 
GH+SPD SPD starting from the initial solution provided by GH 
GH+SA Simulated annealing starting from the initial solution provided by GH

Because there are no references in the 
literature for instance generation to our 
problem, we develop our own random 

problem instances to compare the 
performance of our proposed heuristics and 
discover some useful characteristics of the 
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CPIDP structure. First, we assume that the 
unit production cost is the same across the 
plants. This does not impact the analysis of 
the solution structure because in practice the 
unit production costs can be combined with 
the transportation costs and then generalized 
as the unit variable cost. Thus, unit 
production cost is not considered in the 
experiment. Unit transportation cost is 
proportional to the distance between plant i 
and DC k. The locations of plants i and DCs 
k are uniformly chosen from the square 
bounded by points (0,0) to (100,100). 
Transportation cost is expressed as follows: 
sijkdist(i,k) where:scaling factor(0.1),dist(i,k):euclidean distance 

Demands for a product at a DC, (djk), 
are uniformly selected over the interval (1000, 
20000). The annual production rate is 
uniformly chosen over the interval  

J  K dl , J  K dh
2.0   where dl = 1000 

and dh = 20000, because plant capacities are 
related to the number of products, the number 
of DCs, and the volume of demand. The data 
generated for the annual production rate at 
plants should be checked to ensure that the 
sum of plant capacities can satisfy the total 
demand from all DCs. The setup cost is 
generated uniformly in the range (500, 
10000). We assume that setup time, ௜݂௝ , 
which affects cycle time decisions, is 
proportional to the setup cost. The setup time 
is then expressed as 

aij 
fij

 where  10E6 . The scaling 

factor α is set to be so large because the unit 
for set up time ܽ௜௝  is a year, which is 
consistent with the time units for all other 
parameters in the formulation. Unit holding 
cost ݄௜௝  is selected uniformly over the 
interval (10, 50). Some randomly generated 
data are based on the paper by Yung, Tang, 
Ip, and Wang (2006). 

We choose nine problem 
configurations in our experiment. Each 
problem size is defined by the number of 
plants, products, and DCs. We generate ten 
random instances for each problem 
configuration. The six heuristics are tested on 
these 90 instances. Furthermore, in order to 
show whether the SA algorithm consistently 
converges to a good solution, we run ten 
independent replications of SA for each 
instance. We use different random number 
seeds for the replications, since SA is a 
randomized process. 

To observe the impact of 
transportation and setup costs on the solution 
structure, we conduct sensitivity analysis 
explained further in Section 5.3. Five levels 
of the weight factor, W, are applied to the 
ratio of the weight on setup cost to the weight 
on transport cost: W1=0.01, W2=0.1, W3=1, 
W4=10, W5=100. The values for the ratios 
are carefully chosen through pilot 
experiments so that meaningful insights can 
be drawn. The sensitivity analysis is repeated 
for each problem instance so that we can 
generalize some of our observations on the 
behavior of production and distribution 
operations.    

In measuring the performance of our 
heuristics for solving the CPIDP, we use the 
average percent error versus the best-known 
solution acquired from any tested heuristic, 
instead of measuring the optimality gap 
(Rardin, 2001), as explained next. 

 
5.2. The Performance of Various 
Heuristics 
 

As a performance measure, we 
define the average percent error as follows: 
1

r

TC(each algorithm)TC(best-known algorithm)

TC(best-known algorithm)





i1

r

  

where TC g = total cost; r = number of 

replications. 
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For a given problem instance, we 
calculate the percent error of each heuristic's 
solution to the best-known heuristic for that 
instance. Once we calculate the percent error 
for each instance, we take the average across 
ten instances that was created for each 
problem configuration. For the SA, because 
we do ten independent replications using 
different random number seeds, we obtain ten 
different solutions. Thus, we compare the 
best solution provided by the SA to the other 
heuristics. To report how long the SA 
algorithm takes, the CPU time is added up for 
all ten replications of the SA. We also report 
the worst percent error for each problem 
configuration so that we can observe how 
reliable each heuristic is for various instances. 

Tables 2 and 3 show that SA clearly 
outperforms other heuristics for all problem 
sizes in terms of the solution quality. The SA 
heuristic improves the solution quality by 
0.88-13.63% on average. The worst percent 
error values show that greedy heuristic and 
local improvement heuristics are not reliable 
for various problem sizes and random input 
data. The worst-case percent errors for 
greedy heuristic and local improvement 
heuristics range from 1.8% to 23.04%. 

On the other hand, the local 
improvement heuristics except the SPD have 
significantly shorter CPU times. Table 3 
compares the execution time of each heuristic 
for various problem sizes. All heuristics are 
coded in Java and run on a Sun Fire V440 
workstation with 16GB memory.  

 
TABLE 2. PERCENT ERRORS FOR VARIOUS PROBLEM SIZES VERSUS ALGORITHMS  

  GH GH+RPW GH+RPD GH+SWP GH+SPD GH+SA
P1 5*10*5 Average 13.63% 8.07% 7.67% 6.14% 7.36% 0.02% 

  Worst 21.48% 13.55% 13.10% 13.55% 12.46% 0.12% 
P2 5*10*10 Average 9.14% 5.78% 3.00% 4.48% 2.67% 0.01% 

  Worst 17.85% 12.78% 6.17% 10.58% 6.17% 0.11% 
P3 5*20*10 Average 10.89% 3.35% 2.73% 2.73% 2.68% 0.00% 

  Worst 23.04% 5.71% 4.64% 4.84% 4.50% 0.00% 
P4 5*50*10 Average 10.68% 1.38% 2.56% 1.16% 2.75% 0.20% 

  Worst 14.33% 3.21% 5.40% 3.45% 5.38% 1.95% 
P5 10*10*10 Average 6.80% 5.31% 3.86% 4.99% 3.77% 0.00% 

  Worst 11.80% 10.27% 8.12% 10.27% 8.86% 0.00% 
P6 10*20*10 Average 6.63% 3.01% 2.81% 2.52% 2.89% 0.07% 

  Worst 17.62% 4.43% 5.13% 4.21% 5.86% 0.69% 
P7 10*20*20 Average 4.79% 2.47% 2.59% 2.43% 2.51% 0.00% 

  Worst 12.64% 3.89% 4.31% 4.81% 4.72% 0.00% 
P8 10*50*10 Average 4.48% 1.69% 2.32% 1.65% 2.42% 0.00% 

  Worst 7.70% 3.51% 4.88% 3.39% 4.86% 0.04% 
P9 10*50*20 Average 4.70% 0.88% 2.11% 0.89% 2.16% 0.06% 

  Worst 8.48% 1.80% 3.35% 2.07% 3.44% 0.53% 
 Overall average 7.97% 3.55% 3.29% 3.00% 3.25% 0.04% 
 Overall worst 23.04% 13.55% 13.10% 13.55% 12.46% 1.95% 
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TABLE 3. AVERAGE CPU RUN TIME FOR VARIOUS PROBLEM SIZES (SEC) 

 
As expected, the run time of the 

simulated annealing is very slow compared to 
the other heuristics. CPU run time of SA is 
added up for all 10 replications, because we 
choose the best solution across all 10 
replications.  

The reason that GH+SPD takes so 
much time compared to other local 

improvement heuristics is that it requires the 

largest 
I * I 1 * J * K 2  iterations for 

a single run. Because GH+SPD is run 
repeatedly if there is any improvement during 
any iteration, execution time of GH+SPD 
increases steeply with increased problem 
sizes.  

 

 
FIGURE 1. TOTAL COST VS. NUMBER OF ITERATIONS 

  

 |I|*|J|*|K| GH GH+RPW GH+RPD GH+SWP GH+SPD GH+SA 
P1 5*10*5 0.01 0.07 0.09 0.10 1.25 47.57 
P2 5*10*10 0.04 0.09 0.14 0.21 10.06 133.66 
P3 5*20*10 0.11 0.15 0.38 0.81 39.20 378.75 
P4 5*50*10 0.43 0.58 0.93 3.60 219.09 1316.43 
P5 10*10*10 0.16 0.24 0.65 1.13 43.28 494.20 
P6 10*20*10 0.39 0.57 1.31 3.31 148.45 942.76 
P7 10*20*20 1.09 1.34 2.87 6.04 904.99 2575.53 
P8 10*50*10 1.63 2.01 2.89 18.19 826.69 2561.08 
P9 10*50*20 4.35 4.95 8.26 28.90 4646.25 7353.84 
Overall average 0.91 1.11 1.95 6.92 759.92 1755.98 



Leyla Ozsen, Paul Intrevado, Stewart Liu 
Heuristics For A Joint Capacitated Production, Inventory, And Distribution Model with Production Setup Times 

 

 
Journal of Supply Chain and Operations Management, Volume 18, Number 1, March 2020 

 
46 

 

 
TABLE 4. IMPACT OF TRANSPORT AND SETUP COSTS ON SOLUTION STRUCTURE  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 shows the change of total 

cost vs. number of iteration in GH+SA 
heuristic for problem size 5*10*5. Each data 
point plotted corresponds to the total cost of 
the solution at that iteration that is either 
accepted due to having improved the total 
cost or with a probability distribution for up-
hill climbing. From Figure 1, we can see that 
the SA heuristic experiences several local 
minima before it reaches the best-found 
solution.  

 
5.3. Impact of Input Parameters 
 

In Section 5.3.1, we investigate the 
impact of some important parameters on the 
solution and capture the specific 
characteristics of the CPIDP. In Section 5.3.2, 
we also examine how the solution quality 
would change with a slower or faster 

annealing process by adjusting the cooling 
rate. 
 
5.3.1. Effects of transportation cost, 
production setup cost, and production rate 
 

For each problem instance and weight 
factor, outlined in Section 5.1, we determine 
the average number of products assigned to 
each plant and the average number of plants 
that serve each product. Then we take the 
average of these averages across all 10 
instances for that problem size and weight 
factor. The maximum number of products 
and plants are obtained in a similar way. 
Table 4 shows the results for three different 
problem sizes and five weight factors.  

Since the weight factor is defined as 
the ratio of the weight on setup cost to the 
weight on transport cost, W1=0.01 indicates 
that transportation cost is significant. As the 

  Number of products Number of plants 
  Average Max Average Max 
5-10-10 W1=0.01 8.60 10 4.30 5 
 W2=0.1 7.98 10 3.99 5 
 W3=1 4.64 9 2.32 4 
 W4=10 2.88 5 1.44 3 
 W5=100 2.26 3 1.13 2 
5-50-10 W1=0.01 44.64 50 4.46 5 
 W2=0.1 34.30 48 3.43 5 
 W3=1 18.22 24 1.82 4 
 W4=10 10.60 13 1.06 3 
 W5=100 10.24 12 1.02 2 
10-50-20 W1=0.01 38.33 50 7.67 9 
 W2=0.1 30.67 49 5.99 9 
 W3=1 16.20 28 3.24 6 
 W4=10 9.05 13 1.81 3 
 W5=100 5.52 8 1.10 2 
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value of the weight factor increases, the setup 
cost becomes more significant.   

As we see in Table 4, when 
transportation cost is very significant 
(W1=0.01), the average number of products 
manufactured at a plant is close to the total 
number of products for each problem size. 
For example, 8.60 is close to 10 and 44.64 
close to 50. This indicates that each plant 
serves as many products as possible to meet 
the demands at the nearest DC, within the 
capacity of that plant. That is because setup 
cost contributes to a relatively small portion 
of the total cost and thus we are not 
concerned about how frequently changeover 
happens. For three different problem sizes, 
each plant serves 77%~90% of entire 
products on average when transportation cost 
is very significant (W1=0.01). 

As the weight factor, W, increases, the 
setup cost becomes significant and the 
average number of products manufactured at 
a plant decreases, in that we cannot ignore the 
increased setup cost from frequent 
changeovers. Moreover, the average number 
of plants that manufacture each product also 
decreases. This means that each product is 
served by as small a number of plants as 
possible, so that the duplication of setup costs 
at various plants can be avoided.  

When the setup cost is very 
significant (W5=100), each product is 
manufactured at a single plant and similarly, 

the average number of plants manufacturing 
each product is close to 1 for all problem 
sizes. For example, 1.13 for 5-10-10 and 1.02 
for 5-50-10. Even the maximum number of 
plants that serve each product does not 
exceed 2. This means that each product is 
produced by a single plant minimizing the 
setup cost associated with switching from 
one product to another product.  

As a result, transportation and setup 
costs have opposite effects on the solution 
structure for all problem sizes. Our various 
heuristics identify the equilibrium capturing 
the trade-offs between these conflicting costs. 
As a matter of fact, the results of Table 4 
provide a quantitative basis for the strategic 
analysis that Schmenner (1979) has 
suggested. The pattern of production and 
distribution operation spans the range 
between the two extreme multiple-plant 
manufacturing strategies proposed by 
Schmenner (1979) based on the relative 
magnitudes of setup and transportation costs. 

In the ELSP literature, the production 
plants are assumed to have excess capacity, 
e.g., ௜ܲ௝ ≫  ௜௝. To understand the effects ofߣ
production rate on the total cost components, 
we conduct additional sensitivity analysis. 
The results of this analysis are summarized 
for the first problem size. Similar 
observations are made for the other problem 
sizes. 

 
TABLE 5. EFFECT OF PRODUCTION RATES ON COST COMPONENTS 

Production Rate 
multiplier (PR) 

Total Cost 
($) 

Transport 
Cost ($) Percentage

Setup & 
Inventory Cost Percentage

0.5 2906072 1954029 67% 952043 33% 
1 2849022 1946866 68% 902156 32% 
2 2907723 1973825 68% 933898 32% 
3 2916572 2004699 69% 911873 31% 
5 2928590 2004699 68% 923891 32% 
10 2937488 2004699 68% 932789 32% 
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By comparing the solutions to 
PR=0.5 and PR=1 in Table 5, we can observe 
that in a tight capacity environment 
production assignments made by the 
heuristics might be suboptimal due to the 
tight capacity limits. As the production rate 
increases, production assignment quality 
improves resulting in better solutions. 
However, once the production rate increases 
to a certain level (PR=2), additional capacity 
does not contribute to an improvement in the 
quality of solutions. For larger capacities (PR 
≥ 3), the production assignment remains the 
same, but results in a greater total cost due to 
increased production setup cost. That is 
because the increase in production rate 
decreases the optimal cycle time (see 
equation 19), thereby increasing the setup 
cost (see the first term in equation 3), 
assuming that all input parameters except 
production rate (e.g., PR=3,5, or 10) are the 
same. Moreover, the inventory holding costs 
may still vary, but is likely to increase (see 
the second term in equation 3).  Through this 
sensitivity analysis, we provide insights into 
the appropriate range of production rates that 
will minimize the total cost.   

 
5.3.2. Impact of cooling rate on the 
solution quality 
 

To see how the solution quality would 
change with a slower or faster annealing 
process, the SA heuristic is tested with 
different cooling rates. Figure 2 illustrates 
that as the cooling rate increases the solution 
quality improves. It demonstrates that a 
slower annealing process in the SA heuristic 
produces higher quality solutions than a 
faster annealing process by doing more 
extensive search. For example, a slower 
annealing (Cooling rate > 0.85) improves 2~7% 
of solution for various problem sizes. 

However, as we can see in Figures 2 
and 3, there exists a trade-off between the 
solution quality and computational efficiency. 
As the annealing process becomes slower, the 
execution time increases steeply especially 
for large problem sizes. For example, an 
increase in the cooling rate from 0.95 to 0.99 
improves the solution quality only slightly 
(0.54~0.91%), but the running time increase 
by about 300%. Therefore, we will need to 
find a balance between solution quality and 
computational efforts for SA heuristics. 

In Section 5.4, we describe some of 
our observations on the Simulated Annealing 
process and provide some insights into how 
the SA works. As discussed in Section 4.4, 
clearly using the SPD in the SA process 
performs better than using the SWP, because 
the SPD provides a much larger 
neighborhood than the SWP. Perhaps more 
interestingly, another factor that may 
contribute to a better solution is related to the 
change in the total cost. Assuming that 
smaller product exchanges lead to smaller 
changes in the total cost, we can see that the 
SPD does not cause as large a change in the 
total cost as the SWP does. The change in 
cost affects the acceptance probability 

directly by p  exp
E

T






 . If other SA 

parameter settings are the same, small 
changes in total cost are expected to lead to 
more opportunities for improving the 
solution in the middle to low ranges of 
temperature by allowing up-hill climbing in 
that the acceptance probability decreases 
more slowly. 
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FIGURE 2. SOLUTION GAP VS. COOLING RATE 

 
 

 

 
FIGURE 3. COMPUTATIONAL EFFICIENCY FOR VARIOUS COOLING RATES 
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VI. CONCLUSION AND FUTURE 
RESEARCH 
 

In this paper, we introduce a new 
integrated model that combines production, 
inventory, and transportation decisions with 
production setup time considerations in a 
complex network environment such as 
multiple products, multiple suppliers with 
limited capacities, and destinations. The 
CPIDP takes into account production 
capacity limitations at the plants; multiple 
products are manufactured, one at a time, on 
a single production line, in accordance with 
the production environment of a multi-
national manufacturing firm. Due to this 
consideration, the CPIDP is able to capture 
the capacity limitations at the plants not just 
through fixed capacity constraints limiting 
average flow, but through setup time 
considerations. 

The modeling assumptions result in 
non-linear terms in both the objective 
function and the constraints, rendering the 
CPIDP a difficult problem to solve. We 
develop various heuristics for solving the 
CPIDP and assess the performance of our 
heuristics for different problem sizes and the 
SA control parameter settings.  An extensive 
computational experiment shows that the SA 
algorithm yields significantly better solutions 
than the other local improvement heuristics, 
being evidence of the effectiveness and 
potentiality of the SA as a solution approach 
to solve complex integrated production and 
distribution problems.  On the other hand, 
nonlinear MILP solvers are unable to find 
even feasible solutions for most of the 
instances.  

Finally, our investigation into the 
impact of input parameters on the solution 
structure provides decision makers with 
insights into the trade-offs between 
transportation costs and setup costs at the 

plants. Decision makers can use this model to 
assess the differences in the cost structure 
resulting from the implementation of various 
multi-plant strategies, which are often 
practiced by firms as summarized in 
Schmenner (1979). Moreover, the 
appropriate range of production rate helps 
managers avoid wasting the valuable 
resources of the company as well as make 
better decisions for minimizing the total cost. 

As future research, we can develop 
some interesting extensions of the CPIDP. 
Currently the CPIDP assumes that all plants 
are already built in a specific location and so 
we are given the logistics network. However, 
by relaxing the fixed structure of a given 
logistic network and adding fixed costs for 
possible candidate locations, we can extend 
the CPIDP to a coordinated network design 
model that integrates the strategic decisions 
such as plant locations into operational and 
tactical decisions such as production lot sizes 
and shipments of multiple products. 
Moreover, we can also take into 
consideration the explicit costs or savings 
from closing plants that are already part of the 
existing logistic network if that plant does not 
manufacture any products in the process of 
optimizing the production and distribution 
operations.   

As discussed in Section 5.3.1, the 
production rate can also be consideration and 
modeled as a decision variable so that we can 
make optimal decisions for production and 
distribution without wasting the valuable 
resources of a company such as production 
capacities. In addition, the demands at the 
DCs are currently given which may be 
appropriate for certain products. However, 
the CPIDP can be extended to the stochastic 
version, handling uncertainty in demands for 
various products. 
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APPENDIX A. 
 
Proof that the CPIDP is NP-hard 

In order to prove that the CPIDP is NP-hard, we show that the CPIDP is reducible in 
polynomial time to the GAP, which is known to be NP-hard. (Laurence A. Wolsey, 1998) 

To show that GAP 
p

CPIDP , we consider the following special case of the CPIDP: 

(P1) Minimize cij  sijk djk Xijk
k


j


i
  

subject to

Xijk  1 j,k
i


djk Xijk
k
  ij i, j

ij

pijj
  1 i

ij  0 i, j

Xijk {0,1} i, j,k

 

 
Next, we consider only single product of the P1, the mathematical formulation is as follows: 

 

(P2) Minimize ci  sik dk Xik
k


i
  

subject to

Xik  1 k
i


dk Xik
k
  pi i

Xik {0,1} i, k

 

 
Consider  ci  sik dk  as the profit depending on agent i-task k assignment and consider dk  

as the cost dependent on task k. Suppose each agent i has its own budget pi . Then the P2 would be 
equivalent to the GAP.  

Furthermore, because the special case of the CPIDP (P2) is a subset of the original problem 
(CPIDP), the P2 is polynomially reducible to the CPIDP ( SSP 

p
CPIDP ). Since the P2 is 

equivalent to the GAP, the GAP is also polynomially reducible to the CPIDP (GAP 
p

CPIDP ). 

Therefore, the CPIDP is NP-hard. 
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APPENDIX B. 
 
The second derivative test of G(Ti) is as follows: 

We define G(Ti ) 
fij

Ti

Yij  hij 1 
ij

pij










ijTi

2











j
  where Ti  0 i  1,L , n  

We set the first derivative of G(Ti) equal to zero and then use the sign of the second derivative to 
determine whether the resulting cycle time Ti is a minimum or maximum.  

G Ti 
Ti

 0  
fijYij

j


Ti
2



hij 1 
ij

pij







ij

j


2
 0 i  

Ti
CC 

2 fijYij
j


hij 1
ij

pij







ij

j


i  

 2G Ti 
Ti

2
 0 

2 fijYij
j


Ti
3

 0 i when Ti  Ti
cc  

Therefore, Ti
cc is the optimal cycle time that minimizes G(Ti).   

 
 
 
 


