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In this paper we develop hedging strategies in maximizing profits for an ethanol producer who 
buys raw materials (corn and cellulosic) and produces end-products (ethanol, corn oil and distillers 
dried grains soluble). We first develop an optimization model considering maximization of the 
supply chain profit with hedging. We model the buying (corn and cellulosic feedstock) and selling 
(ethanol end-product) prices to follow a mean reversion with sample average approximation in 
order to capture better price volatilities and less usage of sample data to obtain expected results 
respectively. We use a Multi-cut Benders Decomposition Algorithm to help with efficient 
computations for the proposed model. We also incorporate the aspect of copula to capture the 
dependency structures and price relationships between corn and ethanol futures (a hedging strategy 
that buys or sells a product looking forward into the future). We found that hedging using future 
prices give additional profit margins for the time period used. We intuitively show that an ethanol 
price margin between $2.06 and $2.41 per gallon will allow ethanol producers to make profit or at 
least break-even. A case study using an ethanol plant in North Dakota is used for this study. 
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I. INTRODUCTION 
 
Companies face a wide variety of 

operational and financial risks and as such 
utilize strategies aimed at systematically 
managing risk exposures to minimize losses 
and increase firm value (Boyabatli and 
Toktay 2004).  Some of the popular ways to 
manage financial risks is to use the variety of 
trading mechanisms such as options, futures 
and swaps.  The volatility, uncertainties and 
wide price swings associated with energy 
prices has made the energy sector an 
attractive industry for hedging.    

While there has been a lot of attention 
in the hedging of traditional energy products 
such as crude oil and natural gas, relatively 
less attention has been given to managing 
risks of biofuels and other newer renewable 
energy sources even though those fuel 
sources are also vulnerable to the risks and 
uncertainties associated with the more 
traditional energy sources.  Biofuels such as 
ethanol have been increasingly used as a 
substitute for fossil fuel energy and its 
adoption has been accelerated by government 
mandates across the world.  For example, the 
European Union (EU) requires member states 
to ensure the substitution of 10% of its 
transportation fuel with biofuels by 2020 
while the US Environmental Protection 
Agency (EPA) requires that at least 7.5 
billion gallons of renewable fuels be blended 
with conventional gasoline by the year 2012 
(McPhail et al. (2011).  These mandates have 
contributed to the widespread use of biofuels 
as a source of fuel for transportation purposes, 
hence, making ethanol a very important fuel 
source.   

Similar to the conventional energy 
sources, the price of ethanol and its inputs are 
uncertain, volatile and face wide price swings.  
The process of buying feedstock, processing 
the ingredients and selling the finished 
products involves risks that make it important 
for ethanol producers to utilize strategies to 

manage risks, minimize losses and improve 
shareholder value.  Ethanol manufacturers 
are facing extreme price risks from the 
purchase of feedstock to the sale of end-
products (Zhang et al., 2013). These risks are 
caused by several factors that impact margins, 
including prices for ethanol, corn, corn oil, 
Distillers Dried Grains (DDGs), and 
Renewable Energy Identification Numbers 
(RINs).  In addition, recognizing the period 
to hedge is challenging and determining how 
much of the physical commodity is needed 
adds more complexities to hedging decisions 
(Wilson et al., 2006).  Firms therefore need to 
strategize and make decisions on how to 
hedge over short term, medium term, and 
long term scenarios and to decide which 
markets or mechanisms to use.  

Even though ethanol is a very 
important energy source, the risks and 
uncertainties associated with ethanol 
production and sales are significant making it 
a prime target for hedging and other forms of 
risk management. The review of literature 
demonstrates that very few papers consider 
hedging strategies for renewable energy fuels, 
particularly ethanol.  Recognizing that gap in 
the literature, this paper examines hedging 
strategies available to ethanol manufacturers 
such as futures, swaps and options.  We 
utilize Platts, a market that is used by most 
commodity traders as a trusted source of 
trading and information on the market.  We 
also introduce a number of methodological 
approaches that have not been traditionally 
used in the hedging literature.  Traditionally, 
hedgers seek to take equal and opposite 
positions in related markets and more 
complex models seek to exploit use of 
correlations without incorporating dependent 
relationships.  Copula is utilized in this paper 
since it allows for the incorporation of non-
standard dependencies, thus better reflecting 
conditions faced by ethanol processors.  This 
work also utilizes mean reversion in order to 
better capture the deterministic and stochastic 
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side of the price volatility. Doing this, 
enables the capture of upside and downside 
risks more accurately, thus adding extra 
flexibility in forecasting returns.  The paper 
also utilizes multi-cut benders decomposition 
and sample average approximation 
approaches that are proven to solve the 
problem at hand more efficiently with fewer 
data points (Osmani and Zhang 2017.).   

 There are six main contributions of 
this study:  1) Explore the different hedging 
strategies available to ethanol producers, a 
topic that has been inadequately covered in 
the literature. 2) Integrate financial and 
operational hedging risks in the proposed 
model in order to provide a more complete 
assessment of the problem as compared to 
focusing only on financial risks. 3) Utilize 
copula to capture a better dependency 
structure which enables us to extend one to 
one relationship of prices (corn and ethanol) 
beyond correlation 4) Utilize a Multi-cut 
Benders Decomposition methodology and 
also sample average approximation in order 
to help with efficient computation of the 
hedged profit margins while using smaller 
sample data 5) Provide a stylized model for  
buying (corn and cellulosic feedstock) and 
selling (ethanol end-product) while these 
prices follow a mean reversion (MR) in order 
to more accurately capture price volatilities 6) 
Provide managers in ethanol manufacturing 
companies with risk managing strategies 
through hedging, that can enable them to 
increase profits and shareholder value.  
 
II. LITERATURE REVIEW 

 
There is a vast literature that focuses 

on the use of financial hedging instruments to 
manage risk (example Black and Scholes, 
1973; Merton, 1973; Markowitz, 1952).  
These studies use a variety of methodological 
approaches to examine risk and uncertainty 
in multiple industries.  They include in the 
bakery industry (Wilson et al., 2006), 

soybean crushing industry (Dahlgran, 2005), 
canola and western barley (Mann, 2010), 
distillers dried grains (DDGs) (Brinker et al., 
2007) and the flour industry (Wagner 2001 
and Oberholtzer, 2011). Although financial 
hedging has been well examined, an 
increasing numbers of papers have begun to 
combine financial with operational hedging 
(e.g. Chod et al., 2010).  This is because a 
large number of papers that examine 
financial hedging focus on hedging against 
currency exposure and price variability while 
ignoring important operational risks such as 
those associated with capacity constraints 
and product demand exposure (Chod et al., 
2010).  Operational hedging strategies, are 
viewed as real compound options that are 
exercised in response to the demand, price 
and exchange rate contingencies faced by 
firms in a global supply chain and have been 
examined by a number of studies including 
(Cohen and Huchzermeier 1996); (Cohen and 
Mallik, 1997) and (Boyabatli and Toktay, 
2004).  Some operational strategies include 
postponing logistics decisions, switching 
production and sourcing decisions contingent 
on demand uncertainties and creating 
production capacity flexibilities (Boyabatli 
and Toktay, 2004).  These operational hedges 
are utilized to mitigate risk exposure in the 
long run by reducing the downside risk 
(Cohen and Huchzermeier, 1999). 

In recent years, with the increasing 
popularity of biofuels and the uncertainty 
associated with their production and sale, a 
number of studies have focused more 
specifically on risk and hedging in the biofuel 
industry, particularly ethanol.  The closest 
article that draws nearer to this manuscript is 
(Wiedemann and Geldermann, 2015). The 
authors modeled a planning problem of a 
processor of agricultural raw materials and 
illustrates it with data on the industrial use of 
linseed oil. A two-stage stochastic 
optimization model was used in conjunction 
with a decision support analysis to solve the 
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problem. (Quintino and David, 2013) 
analyzed proposed ethanol futures for the 
Brazilian markets to attract sufficient 
liquidity for market agents.  Their paper 
analyses different cross-hedging scenarios in 
the ethanol supply chain for sugarcane.  The 
analyses conducted evaluate price volatilities, 
and correlations with cross hedging viability 
for ethanol futures. 

(Chang et al., 2012) examined the 
long- and short-run asymmetric adjustments 
of spot and futures prices, namely corn, 
soybeans, sugar, and three cross pairs of spot 
price for each of the products and an ethanol 
futures price.  Their study concludes that the 
corn spread has the strongest long-run 
widening adjustment while sugar showed the 
weakest narrowing adjustment.  Their 
empirical analysis points to the importance of 
hedging the spot prices of agricultural 
commodities with ethanol futures contracts.   

(Dal-Mas et al., 2011) determined 
how an ethanol supply chain is optimized 
according to a comprehensive mathematical 
framework with multiple decision criteria 
under uncertain market scenarios.  A linear 
programming framework is used to solve the 
resulting model.  A case study in Italy is used 
with the results showing that risk mitigating 
preferences are essential for hedging risk and 
decision making within the ethanol supply 
chain with multiple feedstocks.   
(Langholtz et al., 2014) developed a risk 
management framework developed using the 
Intergovernmental Panel on Climate Change 
to review current understanding regarding 
climate-related hazards, exposure, and 
vulnerability of the bioenergy supply chain.  
The authors consider a risk management 
strategy that projects growth of bioenergy 
feedstocks in regions preferentially exposed 
to such hazards.  The paper discusses 
implications of climate change on expansion 
of cellulosic feedstocks.  In addition, 
strategies in advancements of feedstock 

development, logistics, and extension are 
provided.  

Our paper builds upon the 
contributions from (Awudu et al., 2016); 
(Chen et al., 2016).  (Awudu et al., 2015); 
(Langholtz et al., (2014); (Quintino and 
David, 2013); (Dal-Mas et al., 2011); and 
(Chang et al., 2010). While these papers have 
contributed substantially to the risk 
management literature in the ethanol industry, 
there are still gaps in the literature that still 
needs to be addressed.  Some of the gaps 
include: a dearth of robust or stylized models 
that consider multiple feedstock (raw 
materials); risk hedging that focuses 
primarily on financial hedging while not 
paying adequate attention to operational 
hedging; and a heavy reliance on correlations 
to identify relationships between the prices of 
corn and ethanol, an approach that does not 
truly capture the full complexity of those 
relationships. There are also problems that 
focus on computation since there is an 
inadequate utilization of state of the art 
algorithms that reduce computational time 
and provide faster and better ways of solving 
stochastic hedging problems.   

The gaps identified are bridged in this 
paper by extending optimization models to 
include portfolios of ethanol and other 
products such as DDGs and corn oil. We 
incorporate a hybrid-generation biofuel 
supply chain with two types of biomass 
feedstock; corn and cellulosic to capture the 
dynamics of operations. By doing so, we can 
introduce operational risk that is based on 
capacity manipulations.  As part of the 
uniqueness of our approach to optimize 
supply chain decisions, and reduce the impact 
of financial and operational risks, we develop 
a hedging strategy with a stochastic model, 
and solve the resulting problem using a 
Sample Average Approximation (SAA) and 
Mean Reversion with which gives a more 
realistic representation of future and spot 
price movements of ethanol commodities and 
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end-products. This assumption is used 
because most commodity prices exhibit high 
and low prices for a temporary period, and 
then the prices move or shift to the average 
prices over time (Bessembinder et al., 
1995).  We also introduce cross hedging 
strategies involving futures and spot that 
enable us to manage the risk better. To 
improve computing time and speed up the 
process of solving stochastic hedging 
problems, we develop a Multi-cut 
decomposition algorithm for better 
computation and tractability using scenario 
generations.  By introducing new 
methodological approaches that provide 
more realistic scenarios, we also help 
managers to develop more effective risk 
management strategies.   
 
III. METHODOLOGY 

 
We consider a hybrid-generation 

biofuel supply chain with two types of 
biomass feedstock; first and second 
generation. The first generation consists of 
corn and the second generation is cellulosic 
feedstock. The supply chain network consists 
of pre-determined raw material supply 
sources, warehouses or pre-treatment 
facilities, biorefinery plants, and demand 
zones. Supply sources are responsible for 
providing the raw materials which are corn 
and cellulosic feedstock. Warehouse or pre-
treatment facilities prepare the raw materials 
into a suitable form before being transported 
to the biorefinery plants. The biorefinery 
plants convert the pre-treated raw materials 
into end-products, which is biofuel and then 
ships (via trail or truck) the biofuel produced 
to the demand.  

Considering the hybrid-generation 
biofuel supply chain described above, the 
challenges of operational uncertainties (risks) 
from supply, production and demand are 
obvious. Uncertainties such as prices of 
feedstock and end-products are very common 

in Renewable Energy Supply Chain (RESC). 
These are usually termed as financial risk. In 
order to optimize the supply chain decisions, 
and reduce the impact of financial and 
operational risk, we develop a hedging 
strategy with a stochastic model and solve the 
resulting problem. For computational 
tractability, we used a Multi-cut 
Decomposition Algorithm.  

As part of capturing the uncertainties 
in the feedstock and ethanol prices, a Mean 
Reversion is used to model the prices of the 
feedstock and end-products. This assumption 
is used because most commodity prices 
exhibit high and low prices for a temporary 
period, and then the prices will move or shift 
to the average prices over time 
(Bessembinder et al., 1995). But we further 
capture the volatility of the prices in a 
different way by observing the sample price 
over a limited scenario say 1000 instead of 
10,000 and we still get to capture volatilities 
with minimum impact on the results. This is 
implemented from the data set obtained from 
the Iowa University Energy Research Group. 
The corn biomass purchasing mechanism is 
based on a heuristic hedging strategy since 
corn as a commodity has high price volatility. 
In order to reduce the price variability and 
hedge against future uncertainties, the corn is 
procured at a futures price. The cellulosic 
feedstock is purchased at a spot price since no 
variability is assumed for its price.  The 
heuristic method uses the mean reversion 
model to generate sample data for both the 
corn spot and futures prices. A method of 
buying corn feedstock using the spot price is 
used if futures price is greater than say y 
times the mean of the sample price generated. 
This characterizes a mean of an additional 
say x% increase in each scenario. For 
example, when futures price of corn is $30 
and the sampled price mean is $20, then the 
increase (x is $10) and the value of y is 1.5). 
Similarly, the future price is opted if the spot 
price is greater than the y times the mean of 
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the sample price generated.  We further 
exercise options and swaps in selling the 
other end products which are distiller’s dried 
grain soluble (DDGS) and corn oil. For the 
purpose of space, the options and swaps are 
referred to as cross hedging. In the next 
section, we develop the modeling framework 
and discuss the case study.  
 
IV. MODEL DEVELOPMENT 

 
In this section, we develop a model 

that considers the decision-making process of 
an ethanol plant which includes the amount 
of feedstock to purchase, ethanol to produce, 
feedstock to store, ethanol to store, ethanol 
sale, DDGs and corn oil. These decision 
variables are expected to achieve the desired 
revenue by the ethanol producer. We explore 
whether the decision to produce and sell 
ethanol and its by-products based on the 
hedging strategies are profitable. We impose 
no restrictions on the ethanol producer in 
terms of profit realizations if there is capacity 
to produce and meet the desired demand. The 
model input variables, including the index, 
parameters and variables are first listed. The 
mathematical model is designed to examine 
hedging strategies of an ethanol producer. 
The objective function of the model 
maximizes profit of the ethanol producer. 
The next sub-sections present the model 
input variables, objective function and 
constraints. 
 

4.1. Mathematical model Input variables  

Index 
 

j  Supplier index j = 1...J 

b  Buyer index b = 1… B
t  Time period t=1...T  
  

Parameters  
 

lP   Cost of corn (cost at hedging); $ per 

bushel        
hP   Cost of cellulosic (cost at hedging); 

$ per bushel        
e1  Quality factor (defined as a factor of 

the conversion rate of corn to ethanol); 
gallons per bushel of corn             
e   Quality factor (defined as a factor of 

the conversion rate of cellulosic to ethanol); 
gallons per bushel of cellosic  
c  Capacity of the ethanol plant; gallons 

per year 
lD  Demand for corn; gallons per year    
hD  Demand for cellulosic; gallons per 

year     

lS   Selling price for corn ethanol; dollars 

per gallon   

hS  Selling price for cellulosic ethanol; 

dollars per gallon   
 
Variables 
 

lQ  Quantity bought for corn; bushels 

hQ  Quantity bought for cellulosic; 

tonnage per year    
l

oP  Forced market price for corn (market 

conditions); dollars      
h

oP  Forced market price for cellulosic 

(market conditions); dollars 
y   Yield that can be attributed to corn 

and cellulosic ethanol; bushels for corn and 
tonnage for cellulosic  
yl  The total amount produced from corn; 
gallons  
yh  The total amount produced from 
cellulosic; gallons 
 
4.2. Objective function  
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The proposed model seeks to 
optimize the profit of the ethanol supply 
chain considering hedging and non-hedging.                                                                                                            
                                                                                                                                                     
4.2.1. Supply chain profit maximization 

 
The supply chain profit 

maximization being considered here is the 
ethanol producer. The supply chain 

maximizes the price of corn and cellulosic 
ethanol being sold as revenue, against the 
cost of purchasing corn and cellulosic raw 
materials at forced market conditions 
(meaning the best price available for these 
raw materials during the procurement or 
purchasing process). 
 

 
 

     )(),(),1( 00 efQPQPDeQMinSDeQMinSMax h
hl

l
lh

hh
l

ll  , ………………...(1)  

 
where )(efe  which is a random variable is 
explained in the objective function. 

Equation (1) is defined as the 
objective function. This objective function is 
the profit margin made after selling corn and 
cellulosic ethanol, and then subtracting the 
cost of buying the corn and cellulosic raw 
materials. The first two terms, i.e. 

   h
hh

l
ll DeQMinSDeQMinS ),(),1( 

represent the revenue function.  
 l

ll DeQMinS ),1(   means the revenue for 

the corn ethanol that is sold considers the 
minimum between the demand and 
production (since you can always sell what 
you have produced) times the price of selling 
corn ethanol.   h

hh DeQMinS ),( on the other 

side represents the revenue for the cellulosic 
ethanol. h

hl
l

l QPQP 00  and  represent the cost 

of purchasing corn and cellulosic raw 
materials respectively. The random factor 
expressed as  )(efe  represents other costs 
components (which may include 
transportation, logistics, tariffs, etc). Also, 
the objective function considers up-scale and 
down scale potential and losses respectively 
in selling the ethanol and buying corn and 
cellulosic feedstock or raw materials. 
 
4.2.2. Constraints 
 

yeQl )1(    ..........................................(2) 

 

yeQh )( …………….……………….(3) 

 
Note that e1 and e represent the conversion 
rate (yield quality) of corn and cellulosic 
ethanol respectively. yl is the total amount 
produced from corn and yh is the amount from 
cellulosic 
 

hl eyyec  )1( ….…………….…(4) 

 

    hlh
hh

l
l DDDeQMinDeQMin  ),(),1(      

               ...................................................(5) 
 

l

l PP 0 ……………….………………..(6) 

 
h

h PP 0 ………………………..……..   (7) 

 
Equations (2) and (3) are defined as 

the constraints that consider the low and high 
quality of the total conversion of corn and 
cellulosic to ethanol in relation to the yield 
that is gotten from that conversion. These 
equations can be related to the capacity 
constraints as they provide flexibility in how 
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the total operational time is impacted by the 
conversion rate. Equation (4) explains the 
total capacity of ethanol production available 
being greater than or equal to the sum of the 
corn and cellulosic ethanol produced. This is 
what we defined as operational hedging since 
there is flexibility in the production process. 
Equation (5) sales made out of selling corn 
and cellulosic ethanol based on their 
conversion rates, total quality and 
upside/downside potential inputs to the 
function being less than or equal to the 
demand. In summary, the total amount of 
ethanol sold (including corn and cellulosic 
raw materials plus end products) is less than 
or equal to the total demand. In equations (6) 
and (7), the constraints explain that the 
regular prices of corn and cellulosic as well 
as ethanol commodity prices are always 
greater than or equal to the forced price of the 
market conditions. Equations (6) and (7) can 
only be negated under wild market 
speculations and an economic meltdown (at 
least in the commodities markets).  

In the next sections we present the 
sample average approximation (SAA), Multi-
Benders Decomposition Algorithm (MBD) 
and the concept of copula. The SAA and 
MBD are adopted to address the 
computational complexity of the problem as 
part of the methodology used in this paper. 
The copula concept is drawn to give meaning 
to the data sets used for hedging in relation to 
providing more information about the data 
relationships of ethanol and corn prices 
beyond correlation. 

We assume the revenue for DDGS 
and corn oil are same since there is no 
liquidity for their markets and we hedge 
through swaps and options by adopting a 
cross hedge. The profit for the hedged 
equation is always inclusive of the revenue of 
corn ethanol, revenue of DDGS, revenue of 
corn oil, corn feedstock purchased cost, cost 
incurred in taking a futures position, 
transportation cost of ethanol to demand 

zones, other supply chain fixed costs, 
variables costs, and other capital costs.  
 
4.3. Sample Average Approximation 
(SAA)  
  

In this section, we develop and 
discuss the sample average approximation 
(SAA), multi-cut benders decomposition 
(MBD) algorithm, and the procedure for 
solving the entire proposed model based on 
SAA and MBD. In the SAA algorithm, we 
follow the example developed by (Osmani 
and Zhang, 2014) with a sample set with B 
scenarios that is randomly generated from the 
total number of N scenarios, and then an 
optimization problem specified by the 
generated sample set which is solved in 
(Kleywegt et al., 2002). In the SAA method, 
the expected value of the objective function 
Eω[Q(x, ξ(ω))] is usually approximated, 
where Q(x, ξ(ω)) is a realization objective 
function on scenario ω, and Eω is the 
expected value. 




B

b

b BxQ
1

/))(,(     (8a) 

The optimization problem (given by 
Eq. 1-7) corresponding to the original two-
stage stochastic model is then solved using 
traditional algorithms. The optimal objective 
value zB and an optimal solution ݔො  provide 
estimates of their true counterparts in the 
stochastic model. This process can be 
simplified by alternatively considering the 
objective function of the optimization of  Eqn 
(1-7) as equation 8b, where 8a is the 
stochastic part in 8b. Then for each scenario, 
a ܼ஻

௜  and  ݔ෤௜	are	obtained. 





B

b

bT

Xx
B BxQxcz

1

/))(,(max               (8b) 

The SAA method divides N scenarios 
into A equal size independent sample sets, 
with each set containing B scenarios. By 
solving the A stochastic problems using Eq. 
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1-7 as the objective function, objective values
1
Bz  , 

2
Bz  , …, 

A
Bz  and candidate solutions ݔො 1, 

 ො A are obtained. Eq. 9 denotes theݔ ,.… ,ො 2ݔ
average of the A optimal values of the 
stochastic problems. 





A

a

a
BzAz B

1

)/1(                          (9) 

(Kleywegt et al., 2002) shows that ̅ݖB 
≤ zU, where zU is the global upper bound. 
Therefore for a maximization problem, ̅ݖB 
can be used to estimate the upper bound of 
the optimal value for the original stochastic 
problem. For any feasible solution ݔො ∈ X, the 
objective value given by cTݔො  + E[Q(ݔො, ξ(ω))] 
is a lower bound of the optimal value for the 
original stochastic problem. This lower 
bound can be estimated, where {ω1, ω2, …, 
ωN} which are the weights, contain the full 
set of N scenarios. 







N

b

bT
N NxQxcxz

1

/))(,()(               (10) 

The SAA procedure provides A 
different candidate solution (i.e. one for each 
sample set). Eq. 11 is used to find ݔො* with the 
largest estimated objective value (for a 
maximization problem) over the full set of N 
scenarios. 
 {[ොAݔ ,.… ,ො2ݔ ,ො1ݔ] ∋ ොݔ | (ොݔ)Nݖ̂} ො* ∈ arg maxݔ
     (11) 

The accuracy of the solution ݔො * is 
evaluated by computing the optimality gap 
(as given by Eq. 12) for the full set of N 
scenarios and comparing it against ε, a pre-
set criteria. 
 B   (12)̅ݖ/[(*ොݔ)Nݖ̂ – B̅ݖ]

During the traditional use of the SAA 
method, the algorithm terminates when the 
desired optimality gap is achieved. However, 
for problem with large number of variables 
and stochastic scenarios, the desired 
optimality gap for reasonable accuracy (e.g. 
less than 0.5%) might not be achievable using 
the traditional SAA method. But the solution 

results show that unanimity in decisions is 
achieved within reasonable iterations of the 
SAA method. Therefore, a modified SAA 
method is proposed to obtain solutions where 
each sample set gives the same values for the 
binary variables. 

The use of the “modified” SAA 
algorithm is explained below. 
Step 1: Create A sample sets {A = N, N/B1, 

N/B2, ..., 1} with each set populated 
with B scenarios {B = 1, B1, B2, ..., N} 
randomly drawn without replacement 
from the total N scenarios, such that A 
= N/B. 

Step 2: Start with the largest value of A (i.e. 
N) and create A = N sample sets with 
each set populated with B = 1 scenario 
randomly drawn without replacement 
from the total N scenarios. 

Step 3: Solve each of the A = N sets, and 
compute optimality gaps. The SAA 
algorithm terminates if each sample 
set gives the same values for the 
binary variables. Else go to Step 4. 

Step 4: If the desired unanimity in the values 
of the binary decision variables is not 
achieved, then the next largest value of A sets 
is used (A = N/B1), with each set populated 
with B1 scenarios randomly drawn without 
replacement from the total N scenarios. The 
new upper and lower bound including the 
optimality gap are updated. If the desired 
unanimity in the values of the binary decision 
variables is not achieved, then Step 4 is 
repeated using the next largest value of A 
until each sample set gives the same values 
for the binary decision variables.  

The algorithm is adopted from 
(Osmani and Zhang, 2017). 
 
4.4. Multi-cut Benders decomposition 
(MBD) 

 
Multi-cut Benders decomposition is 

then used to determine the remaining first-
stage continuous decision variables by 
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incorporating the decision variables obtained 
from the modified SAA method. Eq. 13 is 
used to describe the general stochastic 
problem which needs to be minimized (Birge 
and Louveaux, 1997). For a maximization 
problem the signs are to be reversed. e.g. loss 
minimization is equivalent to profit 
maximization. In Eq. 13, x is a vector that 
stands for the first-stage continuous decision 
variables; yω are the continuous second-stage 
decisions for each scenario ω; A and b are 
parameter matrices independent of the 
scenarios; and M, hω and Tω are parameter 
matrices for each scenario ω. 

0
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Eq. 13 is decomposed into master 
problem (Eq. 13a), and sub-problem (Eq. 
13b). Advantage is taken of the dual 
properties of Eq. 13b by introducing a new 
variable θ to approximate Eω[zb] and iterating 
between master problem and sub-problem. 
The inequalities in Eq. 13a are the “cuts” that 
link the master problem and the sub-problem. 
dl and el are coefficients for the Benders cut, 
and πω are the optimal dual vectors of 
constraint in the sub-problem for scenario ω. 
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The Benders decomposition 
algorithm is described as follows: 
Step 1: Set iteration counter l = 1 and θ = 0. 
Step 2: Solve master problem Eq. 13a to 
obtain a lower bound LBl on the objective 
value za. 
Step 3: Fix all the first-stage decisions at their 

optimum value x* and solve Eq. 13b 
for each scenario sub-problem to get 
an upper bound UBl = Eω[zb]. 

Step 4: Proceed to test if [(UBl – LBl)/LBl] < 
Tolerance, return the optimal 
solution, otherwise, set the iteration 
counter to 
l = l + 1. Here tolerance is a pre-
determined small value (e.g. < 0.5%) 
to determine the stopping criterion. 

Step 5: Use the duals of the scenario sub-
problem to add a Benders cut to Eq. 
13a and return to Step 2. 

 
Algorithm adopted from (Awudu and 

Zhang, 2012). 

4.5. Identifying price relationships during 
hedging 

In this section we discuss a novel way 
of defining corn and ethanol price 
relationships in our hedging process using a 
concept called copula. This price relationship 
between corn and ethanol is crucial as it 
provides the necessary and dependency for a 
better hedging position and strategy 
adaptation. This relationship identification 
and dependency is referred to as copula. The 
next section provides a brief overview of 
copula (Fernandez 2008). 
4.5.1. Copula  

Copula represents a powerful tool for 
decomposing the joint distribution into the 
marginal distribution and dependence 
structure that can be dealt with separately. 
One can choose the marginal distribution that 
best fits each data asset, and afterwards 
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integrate everything using a copula function 
with some desirable properties. Copulas have 
been applied to the measurement of credit 
and market risk, in particular to the 
assessment of the Value at Risk (VaR) of a 
portfolio. It allows computation of VaR while 
avoiding the usual assumption of marginal 
and joint normality and linear correlation 
structure.  

Implementation of copulas involves 
three steps including: 1) select and construct 
a copula, 2) estimate the parameters 
associated with the copula, and 3) sample 
from the parameterized copula. Copula 
parameters are estimated through a maximum 
likelihood estimation method of the form of 

    
2̂

2 2
1

ˆ ˆln ,ˆ , ,
T

x t y t
t

argmax c G x H y


 


  (14)

where 2̂  is the estimated copula parameter, 

argmax is the mathematical functions that 
provides the argument associated with the 
maximum, ln  is the natural logarithm, and 

   ˆ ˆ,x t y tG x H y are the estimated marginal 

distributions for x and y. To avoid 
distributional assumptions, a non-parametric 
distribution is used for the marginal 
distributions. Schwarz Information Criteria 
(SIC) and Akaike Information Criteria (AIC) 
were utilized for selecting the most 
appropriate multivariate copula. AIC and SIC 
are superior goodness of fit statistics to other 
fit ranking criteria (e.g. chi-squared). 
 
V. CASE STUDY 

 
In this section, we focus on a case 

study involving an ethanol production plant. 
The case study will examine a hybrid-
generation biofuel supply chain in the U.S. 
state of North Dakota (ND) which consists of 

53 counties. ND has already established corn 
ethanol biorefinery plants because of the vast 
availability of corn feedstock (Martin, 1999; 
Muir et al., 2001). Studies such as (Zhang et 
al., 2013) show that ND is suitable for the 
commercial cultivation of both corn and 
cellulosic feedstock such as switchgrass. 
Raw materials are purchased from four 
supply sources. Feedstocks are pre-treated at 
the warehouse, and the pre-treated raw 
materials transported to the production 
facility. Four different biofuel refinery 
facilities convert the raw materials into end-
products; two producing corn-based ethanol, 
and the other two plants for cellulosic-based 
ethanol. All the 53 counties in ND are 
considered as the demand zones.  
 
5.1. Computational analysis 

 
In this section we discuss the 

resulting solution by using a Multi-cut 
Benders Decomposition and SAA methods. 
The proposed optimization models are coded 
in General Arithmetic Modeling Software 
(GAMS). The models are solved by the 
commercial GAMS 26.3.5 version using a 
CPLEX solver. A Dell Latitude E6440 of 
processor speed 5.2 GHz is used. We arrived 
at a solution after 23.45 seconds as compared 
to an intractable solution without the 
algorithm using the GAMS 26.3.5 version 
with a CPLEX solver (generally about 2 
hours before NEOS Report via the same 
computer). This demonstrates the superiority 
of the algorithm used. The results and 
subsequent sensitive analyses are presented 
in the next section. The input parameters used 
in the case study are provided in Tables 1 and 
2. Values of other key input parameters can 
be referenced from Zhang et al. (2013). 
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TABLE 1. CORN ETHANOL PLANT DATA 

Parameters Values  Units  
Cost of corn feedstock MR (6.75,0.095) $ (dollars)/bushel
Price of corn ethanol  MR (2.75,0.095) $ (dollars)/gal 
Corn ethanol demand Based on county/month gallons 
Capacity of corn biorefinery plant 1 120,000,000 Gallons/yr 
Capacity of corn biorefinery plant 2 120,000,000 Gallons/yr 
Raw material transportation  0.0718/mile  $ (dollars) 
Unit end-products transportation cost 0.0718/mile $ (dollars) 
Inventory holding cost for raw material 0.005 $ (dollars) 
Inventory holding cost for end-product 0.005 $ (dollars) 
Unit penalty cost for unmet demand 0.000285 $ (dollars) 
Unit cost per processing 1.24/bushel $ (dollars) 

 
TABLE 2. CELLULOSIC ETHANOL PLANT DATA 

Parameters Values  Units  
Cost of cellulosic feedstock MR (3.8,0.095) $ (dollars)/ton
Price of cellulosic ethanol MR (2.75,0.095) $ (dollars)/gal 
Cellulosic ethanol demand Based on county/month gallons 
Capacity of  cellulosic biorefinery plant 1 120,000,000 Gallons/yr 
Capacity of cellulosic biorefinery plant 2 120,000,000 Gallons/yr 
Unit raw material transportation cost to plants 0.158/mile  $ (dollars) 
Unit end-products transportation cost 0.158/mile $ (dollars) 
Unit inventory holding cost for feedstock 0.0155 $ (dollars) 
Unit inventory holding cost for ethanol 0.15 $ (dollars) 
Unit penalty cost for unmet demand 0.005 $ (dollars) 
Unit cost per processing 1.24/ton $ (dollars) 
  

 
VI. RESULTS AND ANALYSIS 

 
The analysis will be focused on the 

optimal (best) ethanol price adoptions 
(meaning prices of ethanol considered as 
good to sell ethanol and buy corn), logistics 
analysis (storage space for corn and ethanol) 
and cluster relationships (copula 
relationships) between corn and ethanol 
prices. 

 In this section, we outline the 
importance of using copula to develop an 
optimal level of price to sell ethanol. As 
discussed earlier, copula distributions allow 

the ethanol producer to understand price 
relationships that exist between futures and 
spot prices of ethanol by understanding the 
marginal relationships between ethanol spot 
and futures prices. This price marginal 
relationships help the ethanol producer to 
contract for the shipments of ethanol to 
customer destinations. A motivation for this 
analysis stems from ethanol sales price which 
are contracted using the basis price in normal 
market conditions and deliveries are made on 
time. Sometimes, deliveries may be late and 
are delivered at a futures market that is 
inverted. In this case it is typical that a late 
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delivery is negotiated. To stimulate the 
impact of the profit margin variations with 
such delivered contracts, we conduct an 
analysis that determines the relationships 
between ethanol price and revenue margins. 
We assume an agreement between 
destination markets and ethanol producers 
that reduces transit time uncertainties by a 
factor , and transportation cost is reduced 
by .  

Assume demand for the product is 
normal, the new profit margin is expressed as: 

),,()( ,nDfE   . The equation suggests 

the margin function is dependent on demand, 
transportation cost, and transit time 

uncertainties. Analyses are conducted for the 
derived contract to determine the best price 
contract to sell ethanol and still maximize 
profit. For the base case, the ethanol price is 
reduced by 2 cents and transportation cost 
$0.25 per mile. Fig. 1 presents the ethanol 
price analysis. The best price of ethanol 
contract ranges between $2.34 and $2.44 per 
gallon and corresponding to approximately 
five rail 5 cars per day. In summary the base 
case for the transit time has stochasticity and 
reducing this uncertainty increases the profit 
margin. We further simulated different 
margins and compare to the best contracted 
price for ethanol sale between the ethanol 
producer and buyer. 

 

 

FIGURE 1. ETHANOL PRICE ANALYSIS. 
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6.1. Logistics analysis 
 
Ethanol hedging process is influenced 

by logistics strategies including the number 
of storage space, rail car allocation for 
automotive, type of transportation routes, etc. 
It is therefore prudent to conduct a logistic 
analysis in one of these areas. We conduct a 
logistics analysis based on storage space 
available to the ethanol producer which can 
be termed as a lot size. This lot size 
calculation can be related to the previous 
analysis about uncertainties in demand, since 
demand and transit time impact profit 
margins. We consider storage cost on profit 
margins based on the number of days of 
storage. Number of days and ethanol capacity 
discounted equation for new facility is used. 
Fig. 2 illustrates the ethanol and corn storage 
capacity analyses respectively for variations 
in demand.  
 We note that for decreasing demand, 
ethanol storage shows stable profit of 
$0.517M between storage days of 4 and 8 
days. A different trend is realized if the 
demand decreases by 7.5% and 12.5%. Profit 
margins decrease to $0.5145M for this period 
but there is a point of intersection which 
measures the breakeven that can result in 
optimal expected margin. This analysis 
concludes the importance of building new or 
adding extra storage for a certain profit 
margin.  

Similar analyses are conducted for 
corn storage capacity (not shown). In 
addition, 35-38 days of storage for corn 
means profit margins become stable, with an 
increasing profit level between 20 and 32 
days. This analysis means corn storage 
capacities lower than 25 to 30 days should 
consider building extra capacity. When 
demand is decreased, corn storage shows 
margins of $0.515M and $0.5145M between 
storage days of 4 and 8 days. Nonetheless, a 
similar trend is realized if the demand 
decreases between 9.5% and 12.5%. Profit 

margins decrease to $0.513M. Corn storage 
analysis gives a similar trend as ethanol. It is 
concluded that extra capacity addition would 
result in increased profit for a period of 
demand trend and sales.  

 
6.2. Storage (holding) cost impact on profit 

 
In this section we conduct further 

sensitivity analysis between storage (holding) 
cost and ethanol margins. In the base case, the 
overall storage cost of input and output are 
incorporated. Inventory issues affect a 
significant portion of the decision-making 
process especially in determining safety 
stock and economic order quantities. Two 
decisions are made; short- and long-term 
inventory decisions. The analysis here is 
motivated by the provision of short-term 
inventory decision which involves the 
stochasticity of inventory costs as a result of 
the uncertainty in demand. This set of 
analyses is conducted for the overall cost of 
storage and how it impacts the profit margin.  

We introduce a cost factor for the 
storage which determines how much cost is 
increased between $2.2 and 3, where $2.2 is 
the least cost increase and $3 is the highest 
cost increase. The results show that a 
decrease in storage cost from a factor of $2.6 
to $2.4 increases profit from $0.5152M to 
$0.5153M. Subsequent decrease between 
$2.3 and $2.25 factor of the overall cost 
increases the profit by 0.019%, which is from 
$0.5154M to $0.5155M. Interestingly, an 
increase in the cost factor $2.6 to $2.8 
provides a stable profit margin between 
$0.5152M and $0.5151M. Further increase in 
cost between $2.8 and $2.9 does not affect 
profit margins significantly. This 
phenomenon is due to the stable cost of 
storage throughout the entire horizon and 
therefor the impact of the profit margins 
might be as a result of the fluctuating demand. 
The cost of storage varies from the base case 
to approximately 5%, 10%, 15%, and -5%, -
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10%, -15%, to realize the impact of storage 
price changes and the corresponding demand 
uncertainties on profit margins. A realization 
of the profit margin is considered with a small 
variation or fluctuations in the storage cost. If 
the storage cost is higher, the impact is 
significant. Conclusions from this analysis 

indicate a small change in the storage costs 
corresponds to an insignificant profit margin. 
The opposite holds for this change, since 
there is a greater risk in profit reduction if 
storage cost changes are high. This analysis 
is shown in Figure 3 below.

 

 
FIGURE 2. ETHANOL LOGISTICS ANALYSIS. 

 
 
 

4 6 8 10 12 14 16 18 20
0.5135

0.514

0.5145

0.515

0.5155

0.516

0.5165

0.517

0.5175

0.518

Ethanol storage capacity (days)

M
ar

gi
n 

(X
10

6 )

Storage capacity analyses on margin

 

 
Decreasing demand storage-margin

Increasing demand storage-margin



Iddrisu Awudu, Anthony Asare, Eric Asa, Atif Osmanu, Vinay Gonela, Anthony Afful-Dadzie  
Maximizing Profits in an Ethanol Supply Chain with Hedging Strategies 

 
Journal of Supply Chain and Operations Management, Volume 17, Number 2, August 2019 

 
236 

 
FIGURE 3. ETHANOL LOGISTICS ANALYSIS. 

 
6.3. Price data (ethanol and corn) cluster 
analysis 

 
In this section we consider insights 

from an analytical perspective by clustering 
both corn and cellulosic prices to help with 
hedge ratios during hedging. Hedge ratios are 
variable determinants that help an ethanol 
producer maximize the amount of 
corn/cellulosic feedstock to ethanol 
production to enable optimal use of 
production plant, scheduling, and other 
internal as well as external operations. 
Ethanol price data that were clustered over a 
period of 1000 scenarios indicated similar 
patterns as cluster of 10,000 data points for 
our analysis. This confirms that the sample 
average approximation (SAA) used conform 

to the theoretical assumption. The cluster 
diagram for the hedge ratios is shown in the 
Fig. 4. The SAA method will therefore give 
ethanol pricing analysts some leverage in 
identifying fewer trade patterns from a few 
data sets instead of relying only multiple data 
points.  

In relation to the concept of copula, 
Figs. 5-6 confirm the analysis we conducted 
in Fig. 3. We see that based on the definition 
of copula (dependency and marginal 
relationships across variables), there is a 
relationship that follow the different types of 
dependencies between the corn and ethanol 
spot and futures prices respectively. In Figs. 
4-5, the terms x4 and x3 represent the corn and 
ethanol copula distributions. 
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FIGURE 4. CLUSTER ANALYSES OF PRICE DATA POINTS. 
 
In addition, although statistical and regression analysis provide a good indication of relationship 
between and across variables, we use copula to provides a better understanding of the 
independencies among prices instead of using correlation which is too simplistic or assumes a 
linear relationship. For instance, a good ellipse relationship can be demonstrated for the ethanol 
and corn spot, meaning that the prices of corn and ethanol have some relationship that can be 
calculated and some level of dependence structure between the two variables. However, a scatter 
set of relationships from a linear perspective might just give a simple relationship. This makes it 
clear that copula data analysis provides graphical relationships that are more meaningful for 
hedging against risk than the copula alone as shown.  
 
 

 
 

FIGURE 5. COPULA GRAPH BETWEEN ETHANOL FUTURES AND ETHANOL 
SPOT. 
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FIGURE 6. COPULA GRAPH BETWEEN CORN FUTURES AND ETHANOL SPOT. 

 
VII. CONCLUSION AND SUMMARY 

 
This paper develops a model that uses 

hedging strategies in a supplier (farmer) and 
buyer (ethanol producer) setting. We 
concentrate on the profit maximization on the 
side of the ethanol producer. The hedging 
method considers the futures and spot prices 
of corn and cellulosic feedstock respectively, 
while the ethanol end-products are hedged 
using futures. Non-hedging strategy uses spot 
prices for the purchase of feedstock and sale 
of end-products with cross hedging other end 
products using options and swaps for 
whichever price is higher.  

We concentrate on the computational 
tractability of the algorithm to achieve better 
results by capturing the volatilities. A two-
stage stochastic linear programming method 
based on the Multi-cut Benders 
Decomposition Algorithm is used to solve 
the resulting model. We analyze differences 
in profit margins in relation to hedging and 
non-hedging with the non-hedging being less 
than the hedging. We show that the profit 

values for the non-hedging at lower profits 
are observed to be riskier as compared to the 
profit values of the hedged decisions. By 
contracting using hedging positions such as 
futures and spot based on heuristic price 
levels, we indicate that the strategy provides 
a firm a competitive edge by reducing 
exposure to demand and price uncertainties.  

Similarly, we reduce the impact of 
production costs with the aim of reducing the 
adverse effects associated with fluctuations 
in the firm’s expected profit or cost. We 
conclude that by capturing volatility using a 
weighted sample average approximation for 
different periods of corn feedstock and 
ethanol prices, which are assumed to follow 
a Mean Reversion (MR) process, realistic 
results are obtained from the case study 
analysis. Counter intuitively, we determine 
that an ethanol price margin of $2.06-$2.41 
per gallon will allow ethanol producers to 
make profit or at least break-even. 

Finally, this model can be used in 
most if not all energy processing 
environments, i.e. production or processing 
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environment that convert inputs to outputs, 
such as converting crude oil to gasoline, 
kerosene and other co-products. For example, 
in this case, corn is bought from elevators 
according to a contractual agreement that 
spans a period of supply and production is 
done daily with storage capacity for the 
ethanol. Also, the production is for a future 
month being hedged. To some extent, the 
availability of other commodity materials 
within ethanol production such as corn oil, 
DDGs, affect the decision-making process of 
buying corn and selling ethanol. Similar 
analyses can also be drawn from the 
conclusions in this manuscript for other 
energy sectors such as hydro, wind, etc. 

This paper is limited in its scope by 
not incorporating uncertainties and dynamic 
hedging scenarios that include transportation 
challenges. Also, newer transportation 
models and traveling distances such 
Riemannian manifolds will be a good a future 
direction. One other limitation is stochastic 
inventory models based on periodic and or 
continuous inventory management. Also, 
ethanol transportation involves the use of rail 
cars that can be owned, leased, sub-leased or 
purchased by an ethanol producer. These rail 
car strategies affect ethanol transportation 
costs and therefore do affect ethanol margins. 
Finally, using other clustering methods to 
gather data for copula distribution and 
analyses will be the way to go as algorithms 
such as CoCluster (combining copula and 
cluster analysis) from a big data perspective 
will be a good research direction soon. 
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